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<think> The subjects travel from a paved highway … As they move into 
open grassland, a drone appears overhead. At a lakeside, … continuous 
human-computer interaction for aerial surveillance. </think>

What are these people chasing in these scene transitions? 
(A) The man inside the car 
(B) A drone in the sky 
(C) A woman on the road 
(D) A tree in the grass

<think> The subjects depart from a rural road and drive into expansive 
cornfields, … As the vehicle speeds through the crops, an aircraft … 
The vehicle eventually emerges into open terrain … </think>

When does the vehicle drive in the cornfield?
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Figure 1: Overview of our reward-based framework for post-training on video understanding tasks. Top
left: Semantic reasoning is supervised using a discrete reward from multi-choice VideoQA, where the model
selects the correct answer. Top right: Temporal reasoning is guided by a continuous reward based on temporal
IoU in grounding tasks. Bottom left: A reward-based data selection strategy filters training samples based
on behavioral variance. High-variance samples induce stronger preference gradients and are prioritized for
GRPO optimization. Bottom right: Performance comparison across baselines and our Temporal-RLT, showing
consistent improvements on QA, grounding, and reasoning tasks.

Abstract

Understanding real-world videos with complex semantics and long temporal depen-
dencies remains a fundamental challenge in computer vision. Recent progress in
multimodal large language models (MLLMs) has demonstrated strong capabilities
in vision-language tasks, while reinforcement learning tuning (RLT) has further
improved their reasoning abilities. In this work, we explore RLT as a post-training
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strategy to enhance the video-specific reasoning capabilities of MLLMs. Built
upon the Group Relative Policy Optimization (GRPO) framework, we propose
a dual-reward formulation that supervises both semantic and temporal reasoning
through discrete and continuous reward signals. To facilitate effective preference-
based optimization, we introduce a variance-aware data selection strategy based on
repeated inference to identify samples that provide informative learning signals.
We evaluate our approach across eight representative video understanding tasks,
including VideoQA, Temporal Video Grounding, and Grounded VideoQA. Our
method consistently outperforms supervised fine-tuning and existing RLT base-
lines, achieving superior performance with significantly less training data. These
results underscore the importance of reward design and data selection in advancing
reasoning-centric video understanding with MLLMs. Our code is available at
Temporal-RLT.

1 Introduction

Video is a fundamental medium for capturing the dynamics of the visual world. Understanding
real-world videos—characterized by complex semantics, diverse visual content, and long-range
temporal dependencies—remains a core challenge in computer vision. While large multimodal
models (MLLMs) have shown promising capabilities in vision-language tasks, recent efforts have
begun extending them to video understanding [3, 30, 2, 14, 39, 15], where temporal alignment and
structured reasoning are critical. Inspired by human cognitive processes, incorporating explicit
reasoning into large language and multimodal models has been shown to significantly enhance their
comprehension, particularly in tasks requiring multi-step inference and temporal understanding.
Reinforcement learning tuning (RLT) [7, 26, 22, 4, 27] has emerged as an effective post-training
paradigm for stimulating such reasoning abilities, with notable success in both language and vision-
language domains through preference-based optimization.

In this work, we propose Temporal-RLT, a RLT framework designed to improve the video-specific
reasoning capabilities of MLLMs. Our method builds upon the Group Relative Policy Optimization
(GRPO) algorithm [26], which optimizes model behavior by comparing multiple sampled outputs
and applying fine-grained, verifiable reward signals. While GRPO has been successfully applied in
textual reasoning tasks, its extension to video domains remains largely underexplored and introduces
new challenges in modeling structured temporal reasoning under multimodal supervision.

The first challenge is "how to design effective reward functions that incentivize video-specific reason-
ing." To address this, as shown in Fig. 1, we propose a dual-reward formulation that combines discrete
rewards from multi-choice VideoQA with continuous rewards derived from temporal Intersection
over Union (tIoU) in temporal grounding tasks. The discrete reward promotes semantic alignment
by supervising answer correctness, while the continuous reward guides temporal localization accu-
racy. We further extend this formulation to Grounded VideoQA, where the model must both answer
questions and localize supporting video segments, thereby enhancing interpretability and temporal
grounding.

The second challenge involves identifying "effective training samples for GRPO-based RLT". Since
GRPO relies on behavioral variance among sampled outputs to generate preference gradients, we
propose a variance-aware data selection strategy based on repeated inference. For each sample, we
perform multiple forward passes using a base VideoLLM and measure prediction variability. In
multi-choice QA, we retain samples with moderate answer consistency to ensure a mix of correct and
incorrect responses. In temporal grounding, we compute the gap between maximum and average IoU
to identify samples with high intra-group variance. This approach filters out uninformative examples
and focuses training on samples most likely to produce meaningful learning signals under GRPO.

Based on this strategy, we construct two datasets to support Temporal-RLT. Temporal-RLT-Full-
490k serves as a comprehensive dataset covering VideoQA, Temporal Grounding, and Grounded
VideoQA. From this data pool, we derive Temporal-RLT-32k, a high-quality subset selected for its
diversity and optimization potential, enabling efficient training with significantly less data.

We validate Temporal-RLT across 8 benchmarks spanning General VideoQA, Reasoning VideoQA,
Temporal Grounding, and Grounded VideoQA. Our method consistently outperforms strong super-
vised fine-tuning (SFT) baselines, and achieves superior performance compared to Video-R1 [4].

2

https://github.com/appletea233/Temporal-R1


Q: What are these 
people chasing in these 

scene transitions? 

(A) The man inside the car 
(B) A drone in the sky 
(C) A woman on the road 
(D) A tree in the grass

OBS: 30.2  – 72.1 second
 

Po
lic

y 
M

od
el

<think> The subjects travel 
from a paved highway … As they 
move into open grassland, a drone 
appears overhead. At a 
lakeside, … continuous human-
computer interaction for aerial 
surveillance. </think>

<observe> 30.7 ~ 60.0s </observe>

<abswer> B </answer>

<think> No target being chased 
was found in the video, maybe the 
man is chasing another man, … or 
the query does not match any 
identifiable object in the scene.
 </think>

<observe> 4.2 ~ 40.0s </observe>

<abswer> C </answer>

<think>TA man seems to have 
seen something through the car 
window, which might be a flying 
object... They have been chasing 
this object. And saw the drone 
flying over the farmland. </think>

<observe> 50.0 ~ 84.2s </observe>

<abswer> B </answer>

…
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(A) The man inside the car 
(B) A drone in the sky 
(C) A woman on the road 
(D) A tree in the grass

Figure 2: Overview of our training framework. Given a video and its corresponding instruction, the
VideoLLM generates either an answer choice for multi-choice QA or a temporal segment for grounding. The
model is optimized using a GRPO-based RLT pipeline with task-specific rewards, including a discrete reward
for QA and a continuous temporal IoU reward for grounding.

Additionally, we conducted extensive ablation studies to verify the effectiveness of our data selec-
tion strategy and the performance gains achieved by various rewards across different tasks. These
results highlight the effectiveness of our reward design and data selection strategy for enhancing
video-specific reasoning, while demonstrating strong performance with data efficiency in RLT-based
video understanding.

2 Temporal-RLT

In this section, we present Temporal-RLT, our reinforcement learning tuning pipeline tailored for
video large language models (VideoLLMs). As illustrated in Fig. 2, Temporal-RLT extends a standard
VideoLLM architecture by integrating a GRPO-based RLT module to further enhance the model’s
video-specific reasoning and comprehension capabilities. We begin by outlining the overall pipeline of
the base VideoLLM (Sec. 2.1). We then introduce our dual reward formulation (Sec. 2.2), consisting
of a discrete semantic reward from multi-choice QA (MC-QA) and a continuous temporal reward
based on temporal IoU (tIoU). Finally, we describe how GRPO is incorporated into the Temporal-
RLT framework under this dual-reward setting, forming a unified post-training strategy for video
understanding (Sec. 2.3).

2.1 Base Model: QwenVL-2.5 with Structured Reasoning

We adopt QwenVL-2.5 [2] as the base VideoLLM in our framework. QwenVL-2.5 is a powerful open-
source multimodal language model pre-trained on large-scale video-language data, demonstrating
strong performance across various video understanding tasks. Given multimodal input—comprising
video frames and a natural language instruction—the model autoregressively generates outputs such
as answer choices or grounding spans in a textual format. To move beyond direct answer prediction
and promote explicit reasoning, we introduce a structured output format that encourages the model to
think before answering. Specifically, we define a standardized response template using <think> and
<answer> tags:

<think> reasoning trace </think> <answer> final response </answer>.

This format enforces the model to articulate its reasoning process prior to providing the final answer,
enabling more interpretable and consistent behavior during inference. To further incentivize structural
adherence and output consistency, we introduce a format alignment reward Rformat, which encourages
the model to generate outputs that conform to the predefined structure.

3



2.2 Dual Verifiable Rewards in Video Tasks

Reward design plays a critical role in guiding optimization within the GRPO-based RLT framework.
To enhance both global semantic and fine-grain temporal reasoning in VideoLLMs, we introduce two
complementary reward signals. A discrete semantic reward, derived from multi-choice QA tasks,
encourages global semantic alignment. A continuous temporal reward, based on temporal IoU from
grounding tasks, promotes fine-grained temporal comprehension. Together, these rewards provide
structured supervision across multiple reasoning dimensions.

Global Discrete Semantic Reward. To incentivize high-level semantic reasoning, we leverage the
Multi-Choice Video Question Answering (MC-VQA) task. In this setting, the model is given a video
V , a question Q, and a set of candidate answers {A1, A2, ..., An}. The objective is to select the
correct answer Ac, where c denotes the index of the ground truth option. This transforms open-ended
reasoning into a classification problem over a constrained semantic space.

To provide a verifiable reward signal, we adopt a binary accuracy-based reward function:

Racc =

{
1, if Apred = Agt

0, otherwise
(1)

where Apred is the model’s selected answer and Agt is the ground truth. This discrete reward guides
the model to align its global semantic understanding with task-specific supervision.

Fine-Grained Temporal IoU Reward. To capture fine-grained temporal reasoning, we incorporate
the Temporal Video Grounding (TVG) task, where the model is required to localize an event within
the video timeline. Given a video V and a language query, the model predicts a temporal segment
defined by start and end timestamps (Sp, Ep), which is then compared against the ground truth
interval (Sg, Eg).

We define the reward as the temporal IoU between the predicted and ground truth segments:

RIoU =
max(0,min(Ep, Eg)−max(Sp, Sg))

max(Ep, Eg)−min(Sp, Sg)
(2)

This continuous reward quantifies the alignment between predicted and reference segments, encour-
aging precise temporal localization. It provides a smooth gradient signal that complements the binary
supervision from semantic QA, enabling the model to reason across multiple granularity levels.

2.3 Temporal-RLT Optimization with GRPO

To optimize VideoLLMs under our task-specific reward formulations, we adopt GRPO, a preference-
based reinforcement learning algorithm that fine-tunes models without requiring an explicit value
function or learned critic. Instead of estimating absolute returns, GRPO compares the quality of
multiple responses sampled for the same input and uses their relative rankings to guide optimization.
This makes GRPO naturally compatible with our verifiable and multi-dimensional reward design.

We define three reward functions tailored to distinct video reasoning tasks. For Multi-Choice
VideoQA (MC-QA), the reward is defined as Rmc = Rformat + Racc, where Racc indicates answer
correctness and Rformat enforces output consistency. For Temporal Video Grounding (TVG), we
use Rtvg = Rformat +RIoU, where RIoU measures the alignment between predicted and ground-truth
temporal segments. To bridge semantic and temporal reasoning, we further introduce Grounded
VideoQA (GQA), where models are required to both answer the question and highlight relevant
temporal spans using <observe> tags. The reward is defined as Rgqa = Rformat +

1
2 (Racc +RIoU),

encouraging joint semantic accuracy and temporal grounding.

For each input instance, a video-language instruction pair, the model samples a group of G candidate
responses {o1, o2, . . . , oG}. Each response is evaluated using the appropriate task-specific reward
function, yielding a set of scalar rewards {R1, R2, . . . , RG}. These rewards are then normalized
within the group to compute the relative advantage for each sample:

Ai =
Ri − mean({R1, . . . , RG})

std({R1, . . . , RG})
, (3)
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Figure 3: Data statistic of Temporal-RLT-Full-490k training dataset. We find that converting all answers to
an open-ended format is critical in reliably assessing question difficulty and effective model training.

where Ai reflects the relative quality of the i-th response. The model is updated to increase the
likelihood of higher-scoring responses and reduce that of lower-scoring ones, enabling preference-
driven fine-tuning guided by human-verifiable objectives.

By integrating our task-specific temporal rewards with GRPO’s relative optimization framework,
Temporal-RLT provides a unified and scalable post-training strategy. It supports a wide range of
video-language tasks, promotes structured and interpretable outputs, and eliminates the need for
manually engineered reward critics.

3 Rethinking Data Efficiency for Video RLT

Data efficiency is critical for the post-training and fine-tuning of LLMs and MLLMs. It is equally
essential in GRPO-style RLT for video understanding, where effective utilization of supervision is
key to further improving model capability. In this section, we focus on the distinct characteristics of
GRPO optimization and analyze data efficiency beyond conventional assumptions of data diversity.
Building on our dual-reward formulation, we separately analyze the discrete and continuous reward
paradigms, and propose a principled strategy to enhance reward-data utilization in the video domain.

3.1 Difficulty Estimation via Multi-Sampling

GRPO relies on relative preference signals within sampled groups to guide learning. Therefore, the
informativeness of a training sample largely depends on whether its sampled outputs induce sufficient
diversity in reward values. If all outputs are either highly correct or uniformly poor, the absence
of contrast limits optimization signal. To quantify this, we adopt a unified multi-sampling-based
difficulty estimation strategy. For each training instance, we perform N ≫ K inference runs using a
base VideoLLM (pre-RLT) and compute reward scores across sampled outputs. For discrete tasks
(e.g., multi-choice QA), we count the number of correct responses. For continuous tasks (e.g.,
temporal IoU), we evaluate the internal reward spread. Samples are then categorized based on their
observed output variance, forming the basis for subsequent selection and prioritization.

3.2 Data Efficiency under Discrete Rewards

In multi-choice QA tasks, each sampled response receives a binary reward ri ∈ {0, 1} based on
whether the predicted answer matches the ground truth. Effective GRPO optimization requires a
mixture of correct and incorrect answers within the sampled group, so that lower-quality responses
can be aligned toward higher-quality ones.

To approximate this mixture potential, we define difficulty based on the frequency of correct predic-
tions among N base model inferences. We label a sample as:

Easy if c ≥ τeasy, Hard if c ≤ τhard, otherwise Medium,

where c is the number of correct predictions out of N . We retain medium-difficulty samples to ensure
sufficient behavioral variance, which supports more effective preference-based learning.
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3.3 Data Efficiency under Continuous Rewards

In grounding tasks with continuous temporal IoU supervision, binary correctness no longer applies.
Instead, we assess the spread of IoU scores within each sampled group to estimate difficulty. In-
tuitively, samples whose predictions yield a wide range of IoUs provide stronger relative learning
signals. To avoid instability in direct variance computation under limited sampling (K), we define an
approximate metric based on reward discrepancy:

∆IoU = max
i

IoUi − meani(IoUi),

where a higher ∆IoU indicates greater internal diversity. Samples with negligible spread are excluded
from training, as they fail to generate preference gradients within the group.

3.4 Difficulty-Aware Data Construction

To support effective training under GRPO, we construct a difficulty-aware dataset for video RLT,
comprising two specialized subsets: (1) Temporal-RLT-Full-490k as our foundational dataset contain-
ing diverse domain data for VideoQA, Temporal Video Grounding, and Grounded VideoQA tasks,
and (2) Temporal-RLT-32k, a refined subset optimized for sample diversity and training efficacy. Our
raw corpus includes a large set of video-question pairs and temporal grounding data with diverse
semantics and temporal scopes, covering multiple benchmark datasets as visualized in Fig. 3.

We first conduct offline difficulty estimation on Temporal-RLT-Full-490k using the base VideoLLM
through large-scale scaling inference. Each training instance is evaluated using our unified multi-
sampling pipeline and assigned a task-specific difficulty score (based on accuracy frequency for
discrete tasks and intra-group reward variation for continuous tasks). Based on this analysis, we derive
Temporal-RLT-32k, a carefully curated training subset composed primarily of medium-difficulty
samples that prove empirically more effective in generating stable and informative GRPO updates.

This difficulty-aware data construction improves sample efficiency by reducing redundant updates on
uninformative (easy) samples and mitigating instability from noisy (hard) samples. It also ensures
consistency across heterogeneous reward types, enabling a unified optimization framework for
semantic and temporal reasoning tasks.

4 Experiment

In this section, we conduct comprehensive experiments across a range of General VideoQA, Temporal
Grounding, and Video Reasoning benchmarks to evaluate the effectiveness of our Temporal-RLT
framework. We further present an in-depth empirical analysis of data efficiency in GRPO-based RLT,
highlighting the impact of our sample selection and dynamic data strategies.

4.1 Implementation Details

Training and Inference Details. All experiments are conducted using the Qwen-VL-2.5-7B [2]
model, fine-tuned with GRPO-based reinforcement learning. We sample eight candidate responses per
input during training, with a temperature of 1.0 and top-p of 0.99. Training is performed with a batch
size of 48 on 8 NVIDIA A100 80GB GPUs. For inference, we adopt conservative decoding settings
(temperature = 0.01, top-p = 0.001) to ensure output stability, following the official Qwen-VL-2.5
deployment configuration. Video inputs are processed at 2 FPS using Qwen-VL-2.5’s dynamic
resolution module, with at least 4 tokens per frame and a maximum of 2048 tokens per video. Spatial
resolution is automatically adjusted while preserving aspect ratio to ensure efficient computation. All
training and inference procedures are conducted in BF16 precision for numerical stability.

Benchmarks. To evaluate our method across different aspects of video understanding, we conduct
experiments on a diverse set of benchmarks. For general video-language understanding, we use
MVBench [17], TempCompass [21], and VideoMME [5] (excluding subtitles). For video reasoning,
we evaluate on MMVU [40], which focuses on multi-choice reasoning tasks. For temporal video
grounding, we test on Charades-STA [6] and ActivityNet [13], while reasoning-driven temporal
grounding is assessed on ActivityNet-RTL [11]. Finally, for grounded video question answering,
we report results on the NextGQA test set [33]. These benchmarks collectively assess the model’s
capabilities in semantic comprehension, temporal localization, and reasoning across diverse tasks.
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Table 1: Main Experiment Results. Comparison of our Temporal-RLT framework against baseline VideoLMMs
and post-training baselines across multiple video understanding and grounding benchmarks.

Method
Temporal Video Grounding General VideoQA Reasoning QA Grounded QA
Charades ANet ANet-RTL MVBench TempCompass VideoMME MMVU NextGQA

mIoU mIoU mIoU Avg Avg Avg (wo sub) Avg mIoU acc
General VideoLLM

LLaMA-VID[18] - - - 41.9 45.6 - - - -
VideoLLaMA2[3] - - - 54.6 - 47.9 44.8 - -
LongVA-7B[39] - - - - 56.9 52.6 - - -
Video-UTR-7B[35] - - - 58.8 59.7 52.6 - - -
LLaVA-OV-7B[14] - - - 56.7 - 58.2 49.2 - -
Kangeroo-7B[19] - - - 61.1 62.5 56.0 - - -

GRPO-based Method and Baseline
Qwen-VL-2.5[2] 28.0 24.0 6.0 65.3 70.9 56.1 61.3 20.2 77.2
Qwen-VL-2.5-SFT 43.0 24.3 18.1 62.0 68.7 49.6 52.5 28.3 70.6
Video-R1[4] - - - 62.7 72.6 57.4 64.2 - -
Temporal-RLT (ours) 57.0 39.0 27.6 68.1 73.3 57.6 65.0 37.3 78.7

4.2 Main Results

As shown in Tab. 1, our Temporal-RLT approach achieves significant improvements in multiple
video understanding tasks compared to standard SFT. In temporal video grounding, our method
yields substantial absolute gains: +14.0 mIoU on Charades, +14.7 on ActivityNet, and +9.5 on
the reasoning-intensive ActivityNet-RTL benchmark. These results confirm that our RL-based
strategy is highly effective at improving temporal localization. Importantly, while SFT often leads to
performance degradation on general VideoQA benchmarks due to overfitting or misalignment between
pretraining and downstream objectives, our method maintains strong generalization and consistently
outperforms the SFT baseline across both general and reasoning-focused tasks. Specifically, we
observe a +3.7 improvement on the MMVU benchmark, highlighting the model’s enhanced reasoning
capability under our training paradigm. Moreover, when compared to Video-R1 [4], our method
achieves superior performance across all evaluated tasks while requiring less data for training. This
demonstrates the effectiveness of our data selection strategy and highlights the data efficiency of our
RLT pipeline. Together, these results showcase the superiority of our Temporal-RLT framework in
achieving strong performance across grounding, general QA, and reasoning tasks, while maintaining
high data efficiency and strong generalization across diverse video benchmarks.

4.3 Ablation Study

We present a series of ablation studies to understand how task composition, reward design, and data
selection affect the performance of our Temporal-RLT framework. The results reveal critical insights
into optimization behavior and generalization across video-language tasks under GRPO-based tuning.

Multi-Task Ablation. Our experiments systematically evaluate the impact of different training data
configurations on model performance. The TVG-only setup yields substantial improvements on
temporal grounding tasks, with gains of +27.6 mIoU on Charades and +11.6 on ActivityNet, while
maintaining reasoning performance (no degradation on MMVU) and improving grounded QA results
(+5.8 mIoU). These findings suggest that enhanced temporal understanding can transfer effectively
to related tasks. Adding VideoQA data introduces expected trade-offs: while it significantly improves
question-answering accuracy on both general and reasoning-oriented VideoQA benchmarks, it leads
to a moderate decline in grounding precision. Further augmenting with grounded VQA (G-VQA)
produces more nuanced effects, including domain-specific gains on ActivityNet (+7.6) and smaller
but meaningful improvements on Charades-STA (+1.1), along with a reasoning enhancement of
+0.8 on MMVU. Together, these results highlight the partially decoupled development of temporal
understanding and reasoning abilities. They also reveal critical trade-offs in data composition during
RLT, illustrating the optimization boundaries across different video understanding tasks.

Performance with More Video Tokens. As shown in 3, by increasing the number of input video
tokens, we achieve consistent performance improvements across four types of tasks. Moreover,
compared to the SFT model, our method benefits more significantly from the increase in video
token numbers. In contrast to the previous Video-R1, our approach demonstrates stable performance
improvements across all tasks. Notably, when increasing the number of input video tokens, Video-R1
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Table 2: Ablation Study on Multi-Task RL Tuning Components. We analyze and compare the effects of
using different training data and reward types for Temporal-RLT.

Method
Temporal Video Grounding General VideoQA Reasoning QA Grounded QA

Charades ANet ANet-RTL MVBench TempCompass VideoMME MMVU NextGQA
mIoU mIoU mIoU Avg Avg Avg (wo sub) Avg mIoU acc

Qwen-VL-2.5 (baseline) 28.0 24.0 6.0 65.3 70.9 56.1 61.3 20.2 77.2

+w/ TVG 55.6 35.6 23.6 61.8 71.2 52.4 61.3 29.7 75.3
+w/ VQA - - - 68.1 72.5 58.6 63.1 25.0 78.,4
+w/ VQA + TVG 55.9 31.3 23.2 68.0 72.9 58.4 64.2 27.0 78.2
+w/ VQA + TVG + G-VQA 57.0 39.0 27.6 68.1 73.3 57.6 65.0 37.3 78.7

Table 3: Ablation Study on More Video Tokens. We analyze and compare the effects of using more Video
Tokens for Inference Result .

Method Video Tokens
Temporal Video Grounding General VideoQA Reasoning QA Grounded QA

Charades ANet ANet-RTL MVBench TempCompass VideoMME MMVU NextGQA
mIoU mIoU mIoU Avg Avg Avg (wo sub) Avg mIoU acc

Qwen-VL-2.5 2048 28.0 24.0 6.0 65.3 70.9 56.1 61.3 20.2 77.2
Qwen-VL-2.5 4096 35.7 33.4 7.1 66.5 71.0 59.4 61.1 26.3 76.5
Qwen-VL-2.5-SFT 2048 43.0 24.3 18.1 62.0 68.7 49.6 52.5 28.3 70.6
Qwen-VL-2.5-SFT 4096 43.8 23.9 18.7 63.0 68.9 52.1 55.2 27.4 71.3
Video-R1 2048 - - - 62.7 72.6 57.4 64.2 - -
Video-R1 4096 - - - 63.9 73.2 59.3 63.8 - -
Temporal-RLT (ours) 2048 57.0 39.0 27.6 68.1 73.3 57.6 65.0 37.3 78.7
Temporal-RLT (ours) 4096 58.0 41.3 33.0 69.0 73.6 59.6 66.1 38.2 79.7

experiences a performance drop on the reasoning QA task in the MMVU benchmark, whereas our
method maintains robust gains.

Data Selection for Multi-choice VideoQA. The ablation study investigates the impact of difficulty
distribution in multi-choice training data. As shown in Tab. 4a, reducing the proportion of easy
samples while increasing medium-difficulty data improves both general and reasoning performance
(evident from the comparison between the first and third rows). Similarly, increasing hard samples
while reducing easy ones, while keeping medium data fixed, also enhances performance (first vs.
second row), suggesting that easy data contribute little to effective training. Rows two through five
further show that gradually increasing the share of medium-difficulty samples, while decreasing both
easy and hard samples, leads to consistent improvements across VideoQA benchmarks. Notably,
comparing the second and third rows reveals that while a higher proportion of hard data can benefit
reasoning, it may negatively impact general performance. These results highlight the importance of
balancing difficulty levels, particularly by increasing medium-difficulty samples, to optimize model
training under GRPO-based RLT.

Data Selection for Temporal Grounding. In temporal video grounding, the reward signal is
continuous, making intra-group variability a critical factor for effective learning. We use ∆IoU as a
proxy for internal diversity within sampled outputs. As shown in Tab. 4b, increasing ∆IoU from 0 to
0.3 consistently improves grounding performance. These results indicate that samples with greater
prediction variance provide more informative preference signals, making them more suitable for
GRPO-based RLT in temporal grounding tasks.

Generalization of RLT Across Video Tasks. To assess the generalization capability of RLT in
video understanding, as shown in 5, we perform both SFT and GRPO-based RLT using only the
Charades training set, and evaluate performance on both in-domain and out-of-domain benchmarks.
Compared to the SFT baseline, the GRPO-trained model demonstrates substantial performance
gains and stronger reasoning capabilities, as evidenced by the generation of explicit "think" traces.
Specifically, on the in-domain Charades dataset, our model achieves a +4.7 mIoU improvement.
More notably, it generalizes effectively to out-of-domain settings, with a +16.0 mIoU gain on
ActivityNet and a +8.3 mIoU gain on the reasoning-focused ActivityNet-RTL benchmark. These
results highlight not only the effectiveness of our approach for temporal localization, but also its
ability to transfer reasoning capabilities across tasks, thereby enhancing both localization accuracy
and temporal reasoning performance. This demonstrates that GRPO-based training equips the model
with stronger generalization and adaptability to diverse video domains and task requirements.

Distributional Shifts Before and After RLT. We further examine changes in the model’s output
distribution induced by RLT training as shown in 4. For the VideoQA task, we observe that prior
to RLT, most samples were classified as easy, though a substantial portion exhibited medium or
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Table 4: Ablation Studies: Video QA and TVG Data Selection.

Easy: Middle: Hard General VideoQA Reasoning QA
MVBench TempCompass VideoMME MMVU

4 : 4 : 2 64.3 70.0 52.8 59.5
2 : 4 : 4 65.9 70.3 55.9 63.0
2 : 6 : 2 67.2 71.3 56.8 62.1
1 : 8 : 1 68.1 73.4 57.1 63.4

0 : 10 : 0 68.1 72.5 58.6 63.1

(a) Ablation for Video QA Data Selection

∆IoU
Charades-STA

Recall@0.3 Recall@0.5 Recall@0.7 mIoU

0 78.2 63.9 37.4 54.7
0.1 78.0 64.8 38.9 54.9
0.2 78.8 63.7 38.5 55.0
0.3 78.6 64.5 39.9 55.5

(b) Ablation for TVG Data Selection

Table 5: Temporal Video Grounding OOD Evaluation.

Tuning Type Charades-STA ActivityNet ActivityNet-RTL
R@0.3 R@0.5 R@0.7 mIoU R@0.3 R@0.5 R@0.7 mIoU R@0.3 R@0.5 R@0.7 mIoU

✗ 42.4 29.8 14.0 28.0 34.4 22.5 11.6 24.0 7.9 2.6 2.9 6.0
SFT 73.9 61.6 38.5 52.8 33.4 18.9 9.0 23.1 24.0 14.8 7.4 17.8
RLT 80.2 68.3 44.5 57.9 56.9 38.4 20.2 39.1 40.2 22.7 10.9 26.3

hard difficulty. After RLT, the medium-difficulty samples largely shifted toward either easy or hard,
indicating a loss in output diversity. For the temporal grounding task, we compare changes in the
distribution of the ∆IoU (max–min) and mean IoU scores. Before training, ∆IoU peaked near the
center, while mean IoU was skewed leftward. Post-RLT, the ∆IoU peak shifts closer to zero, and the
mean IoU distribution moves rightward. This suggests an overall performance improvement, but
also a reduction in intra-group variance. These trends reveal important task-specific implications. In
the case of VideoQA, the convergence of predictions implies that further RLT provides diminishing
returns, as the model’s output becomes overly deterministic and less capable of generating meaningful
preference gradients. In contrast, temporal grounding tasks retain sufficient prediction variance post-
RLT, indicating continued room for improvement. This highlights the importance of considering
output diversity in evaluating the saturation and potential of RLT for different video tasks.

5 Related Work

Video Large Language Models. Video Large Language Models (VideoLLMs) [2, 14, 34, 39, 15]
have emerged as unified architectures for video-language understanding. Early works [16, 18]
focused on tasks such as video captioning, video question answering, and video-grounded dialogue,
typically trained via supervised objectives. More recent efforts [10, 20, 31, 12, 36, 29, 25, 15, 9] have
introduced temporally structured datasets and architectures to better capture frame-level alignment
and long-range dependencies. Techniques such as sparse sampling and temporal token compression
have been proposed to improve temporal perception and efficiency. In parallel, temporal reasoning has
gained increasing attention. Lita [11] introduced a benchmark targeting temporal grounding, while
Momentor [24] released a large-scale dataset for temporal reasoning. However, most approaches
remain grounded in supervised fine-tuning (SFT), with reinforcement learning tuning (RLT) still
underexplored for developing temporal understanding and generalizable reasoning in VideoLLMs.

Reinforcement Learning Tuning for MLLMs. Reinforcement learning (RL) has proven effective for
improving alignment and reasoning in large language and multimodal models. DeepSeek-R1 [7, 26]
showed that preference-based tuning with outcome-level rewards can enable strong chain-of-thought
(CoT) reasoning without step-level supervision. Building on this, Kimi-k1.5 [28] adopted rule-based
RL strategies to improve reasoning across both text and vision modalities. In the multimodal setting,
RLT with verifiable rewards [22, 38, 37, 41] has been used to enhance visual reasoning in tasks such
as VQA and image grounding. However, applying RL to video understanding remains limited due to
challenges in designing temporally sensitive rewards and modeling spatiotemporal consistency. Only
a few works, such as Video-R1 [4], have explored this direction, leaving significant space for further
research on reward formulation and training efficiency in the video domain.

6 Conclusion

In this paper, we present an RL-based post-training framework for enhancing the video-specific
reasoning abilities of LLMs. We build upon the GRPO algorithm and propose a dual-reward
formulation that explicitly supervises both semantic and temporal reasoning. To ensure effective
optimization under this framework, we introduce a variance-aware sample selection method based
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Figure 4: Changes in data distribution before and after RLT. We report the distribution of correctness counts
for MC-VideoQA and the IoU variance (max–min) for temporal grounding. The post-RLT data reflects only the
subset of samples selected from the original dataset based on our sampling strategy.

on repeated inference and a dynamic sampling strategy that progressively refines the training set.
Through the construction of two dedicated datasets and comprehensive experiments on a wide
range of video understanding tasks, we demonstrate that our approach significantly improves model
performance in reasoning-centric scenarios, even when compared to existing SFT and RLT baselines.
Our results highlight the importance of tailored reward design and data selection in post-training
VideoLLMs and open up new directions for scalable, reasoning-driven video understanding.

Limitations. This work focuses on reward formulation and data efficiency within the GRPO-based
RLT for video understanding. We do not explore the construction of high-quality, fine-grained
thinking traces to support SFT for enhancing the model’s explicit thinking and reasoning abilities.
Incorporating such structured thinking supervision remains an important direction for future research.
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Table 6: Result for Treating VideoQA as Grounded QA.

Infer as GQA General VideoQA Reasoning QA
MVBench TempCompass VideoMME MMVU

✗ 68.1 73.3 57.6 65.0
✓ 67.8 72.8 57.3 63.5

A Data Selection Implementation Details

To filter high-quality data suitable for GRPO training from the Temporal-RLT-Full-490k dataset,
we first categorize the data into three types: tasks requiring Discrete Rewards, tasks requiring
Continuous Rewards, and tasks requiring both. These categories align with grounded VideoQA
tasks. Initially, we utilize the entire dataset to perform "No-Think" inference using the Qwen-VL-
2.5-7B model to generate preliminary results. Subsequently, we apply task-specific processing for
each category, using the same settings as the GRPO inference process (temperature = 1.0, top-p =
0.99, and sample-N = 8).

Discrete Rewards Data Selection For discrete rewards data, we set thresholds of τeasy = 1 and
τhard = 7 to classify the data into easy, medium, and hard categories. Based on our ablation study,
which showed that medium-level data performs best for multi-choice tasks, we select 16k samples
from the medium category. Additionally, we ensure an even distribution of samples from each data
source within the dataset.

Continuous Rewards Data Selection For continuous rewards data, our ablation study revealed that
a larger ∆IoU leads to better results. Therefore, we select data with ∆IoU ≥ 0.3. From this subset, we
extract 8k samples while maintaining an even distribution of samples across all data sources.

Grounded QA Data Selection For tasks requiring both types of rewards, we apply the aforemen-
tioned rules simultaneously. However, due to the limited availability of data in this category, we
lower the ∆IoU threshold to 0.1. From this filtered subset, we select 8k samples, ensuring an even
distribution across all data sources.

By following these steps, we ensure the selection of high-quality, balanced data tailored for GRPO
training, optimizing performance across various task types. As a result, we constructed the Temporal-
RLT-32k dataset, which serves as a refined subset designed to enhance the training process and
improve task-specific outcomes.

B Results

B.1 Treating VideoQA as Grounded QA

Our model inherently supports treating VideoQA as a form of Grounded QA reasoning, which can be
achieved simply by adjusting the prompt format. We evaluated the approach of treating VideoQA as
Grounded QA, and while there is some performance degradation as shown in 6, this method allows
the model to specify highly relevant time intervals being observed before answering the question.

B.2 Visualization

We visualized the example output results on the tasks of Temporal Video Grounding 5, Video QA 6,
and Grounded QA 7, including both the reasoning process and the final answers.
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Answer: <think> The person in the video appears to be lying in bed, covered with a blanket. As the video progresses, the person's 
body movements and facial expressions suggest they are waking up. The person's eyes open, and they start to move their arms and 
legs, indicating the process of waking up. </think>
<answer> 8.8 –22.9s <answer>

Question： Give the query: ‘A person awakens in bed.', when does the described content occur in the video?
GT：9.4 – 22.1 s

predict：8.8 – 22.9 s

𝑰𝒐𝑼 = 90.06

Answer: <think> The video begins with a focus on a young child standing on a base, likely in a baseball field, with an older man 
standing nearby. The man appears to be pointing towards something, possibly giving instructions or encouragement to the child. This 
suggests a moment of teaching or guidance, likely related to the child's involvement in a baseball game or practice.</think>
<answer> 0.0 – 20.0s <answer>

Question： Give the query: 'A small child is seen standing on a base with an older man pointing.', when does the described content occur in the video?
GT：0.0 – 25.5 s

predict：0.0 – 20.0 s

𝑰𝒐𝑼 = 78.43

t

t

Answer: <think> The video shows a sequence of events at a gambling table in a casino. The activities start with a dealer dealing 
cards and a man in a suit observing. As the video progresses, the man in the suit becomes more animated and starts to interact more 
with the dealer and other players. The atmosphere seems to become more intense and possibly disorderly as the man's behavior 
becomes more aggressive and confrontational.</think>
<answer> 50.0 – 100.0s <answer>

Question： Give the query: 'When does the activities at the gambling table start to become disorderly?', when does the described content occur in 
the video? GT：62.5 – 99.9 s

predict：50.0 – 100.0 s

𝑰𝒐𝑼 = 74.74

t

Figure 5: Visualization of Temporal-RLT’s reasoning outputs on the Temporal Video Grounding task. The
three examples, from top to bottom, come from Charades-STA, ActivityNet, and ActivityNet-RTL, respectively.
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Answer: <think> The video segment begins with a question about what happens to our joints when we crack them and whether it is 
bad for you. It then delves into the explanation of how joint lubrication works, using a diagram of a synovial joint and a 
skeleton to illustrate the process. The video also touches on the effects of habitual knuckle cracking on hand function and 
the results of a study over 60 years. The segment concludes with a call to action to subscribe to the channel and watch more 
videos.</think>
  <answer> (D) <answer>

Question：Which of the following could be the main topic of the video segment?
   (A) The surgical procedure for joint replacement.

  (B) The nutritional requirements for healthy bones.
  (C) The explanation of how joint lubrication works.
  (D) What happens to your knuckles when you crack them.

Answer: <think> The person shows the following objects to the camera:
1. A clear glass with a blue label.
2. A green glass.
3. A red wallet.
4. A red book.
5. A black and white book. 
6. A red book again. </think>

  <answer> (B) <answer>

Question：How many times did the person show objects to the camera?
  (A) 5
  (B) 6
  (C) 8

Figure 6: Visualization examples of Temporal-RLT’s reasoning output on Video QA task. The two examples
are from VideoMME and MVBench, respectively.

Answer: <think> The brown cat is watching the other cat eat food, which suggests that the brown cat might be waiting for its turn 
to eat or might be observing the other cat's behavior. There is no indication that the brown cat wants to go into a box or rest, 
and the other cat's actions do not suggest a change in playing position or a desire to rest.</think>

<observe> 28.0 – 49.1s </observe>
<answer> (D) <answer>

Question：Why does the brown cat watch the other cat eat food?
  (A) Wants to go into box.
  (B) Resting.
  (C) Change playing position.
  (D) Waiting for his turn.
  (E) To rest.

t
GT：33.8 – 49.9 s

predict：28.0 – 49.1 s

𝑰𝒐𝑼 = 69.86

Answer: <think> The lady in white on the floor appears to be adjusting or interacting with something on the floor, possibly a piece 
of clothing or an object, as she is sitting on the floor and leaning forward. The other individuals in the room are mostly sitting 
and appear to be watching or engaged in their own activities, but there is no clear indication of them playing a guitar or 
shuffling cards. The lady in stripes is not visible in the video, and the girl's jacket is not mentioned as a focus of the 
video.</think>

<observe> 6.5 – 11.8s </observe>
<answer> (B) <answer>

Question：What does the lady in white on the floor do as everyone was sitting around?
  (A) Go to lady in stripes.
  (B) Unwrap something.
  (C) Adjust the girl’s jacket.
  (D) Shuffle cards.
  (E) Play guitar.

t
GT：4.0 – 12.0 s

predict：6.5 – 11.8 s

𝑰𝒐𝑼 = 66.25

Figure 7: Visualization of Temporal-RLT’s reasoning output on Grounded QA task. The examples are
from the test set of NextGQA.
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