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Abstract

Recent large-scale text-to-video diffusion models demonstrated striking capabil-
ity in synthesizing realistic clips, yet achieving effective control over objects’
motion trajectories remains a challenging task. Prior attempts either required
model-specific architecture modifications and costly training, or relied on zero-shot
attention masks with limited effectiveness, or stacked multiple rounds of test-time
latent optimization, achieving modest controllability at high computational cost
and long running time. In this study, we introduce ZeroTrail, a novel zero-shot,
tuning-free framework that equips video diffusion models with superior trajectory
controllability without requiring alteration to the model architecture or incurring
excessive inference time in multiple rounds. Our framework is composed of two
key components: (i) a Trajectory Prior Injection Module (TPIM), which embeds
the desired path into latent features through a single round of test-time training,
and (ii) a Selective Attention Guidance Module (SAGM), which amplifies or atten-
uates cross-frame attention dynamically to reinforce the injected prior and preserve
spatiotemporal coherence. Our framework is modular and requires no architectural
modification, allowing it to be adapted to video diffusion models without requiring
alterations to model architectures or additional training. Extensive experiments
demonstrate that our framework consistently outperforms existing methods, accu-
rately steering objects along complex trajectories while maintaining video diffusion
models’ ability to generate high-quality, consistent videos.

1 Introduction

Current text-to-video diffusion models are capable of generating high-quality videos with smooth
motions following user-specified textual prompts \Guo et al.|[2023], Ho et al.|[2022a]]. Nevertheless,
solely relying on text prompts suffers from limited ability to effectively control spatial layouts and
motion trajectories of objects in generated videos, which remain crucial for generated videos to
convey meaningful stories and maintain high expressiveness Hu and Xu|[2023]].

To bridge this gap, a variety of solutions have been explored. Drawing inspiration from the success
of ControlNet|Zhang et al.|[2023]] in text-to-image tasks, prior works [Wang et al.l 2023a, |Hu and
Xu, [2023]] leverage dense control signals, like skeleton tracks or edge maps, for motion guidance.
However, models need expensive fine-tuning to be able to follow such dense signals. Additionally,
they need to be annotated frame-wise with intensive labour cost, posing a significant barrier for
general users and casual content creation, while sparse signals such as drag trajectories or bounding
boxes can be annotated once and then interpolated, requiring minimal human effort. Another lines
of work Wang et al.|[2023blal] fine-tune video diffusion models using large-scale datasets of video-
trajectory annotation pairs. While the resulting models exhibit reasonable controllability with sparse
trajectory signals, achieving this demands extensive computational resources, significant training
time, vast amounts of annotated data, and often requires model-specific architectural modifications.
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A colorful hot air balloon floating in the sky. A balloon drifting in a clear sky.

Figure 1: ZeroTrail enables diverse video diffusion foundation models to modulate moving objects’
trajectories without the need for fine-tuning. By specifying the object name in the textual prompt and
a sequence of bounding boxes as a control signal, the object’s trajectory can be intuitively manipulated
in the generated video by the end user. Zoom in for better details.

Empirical experiments in text-to-image generation demonstrate that the initial noisy
latent plays a significant role in determining the spatial composition, while [Epstein et al. [2023],
Phung et al.| [2023]] shows that regulating the denoising process during test time could also help
to customize the generated image’s landscape. Considering text-to-video generation models Wang|
let all| [2023¢]], [Chen et al.|[2023al, 20244] are pre-trained on large-scale datasets and demonstrated
strong prior knowledge of dynamic motions and object movements, this trait could be exploited for
generating controllable, smooth motions. By jointly utilizing both characteristics, effective trajectory
control of moving objects can be achieved under zero-shot settings for video diffusion models.

Inspired by recent advancements in subject position control for image generation, we propose
ZeroTrail, a zero-shot trajectory control framework for video diffusion models to further bridge
the gap between effective trajectory enforcement and the need for a fine-tuning-free, cost-efficient
method. ZeroTrail bridges this gap by introducing a lightweight yet effective recipe composed of
two key components. The Trajectory Prior Injection Module (TPIM) optimizes latent representations
at test-time using a cross-attention contrastive loss, encoding motion trajectory priors into noisy
latents, leveraging the strong subject localization controllability of diffusion U-Nets’ text-latent
cross-attention layers [2023]. Concurrently, the Selective Attention Guidance Module
(SAGM) adaptively enhances or suppresses frame-wise and frame-token cross-attention activations
based on user-specified trajectories, thereby reinforcing spatial-temporal alignment and enabling fine-
grained trajectory control. By orchestrating both modules during early denoising stages, ZeroTrail
achieved high-quality video generation with effective trajectory control, eliminating the need for
model fine-tuning. Our contribution is summarized as follows:

* We proposed ZeroTrail, an effective tuning-free trajectory control framework for pre-trained
text-to-video diffusion models. It is modular and adaptable to video diffusion models out of
the box without the need for fine-tuning or architecture modifications.

* Contrast to previous works, we bring the advantage of both latent optimization and attention
guidance, forming a novel joint latent—trajectory alignment paradigm with superior trajectory
controllability.

* Our framework demonstrates superior trajectory controllability over existing methods
through extensive experiments, offering pre-trained video diffusion models with effective
trajectory control capability.

2 Related Work

Video Diffusion Models Diffusion Models have demonstrated their revolutionary capability in
producing high-quality images and video samples through recent groundbreaking advancements
[2021]], [Podell et al] [2023], [Qin et al|[2024]], Ho et al] [2022b]]. The foundational
DDPM Ho et al.| [2020]] paved the road for high-quality image generation, while Latent Diffusion
Models|[Rombach et al.| [2021]] are introduced to achieve superior efficiency while maintaining sat-
isfiable generation quality. VDM expands diffusion models’ capability into the
field of video generation, and LVDM further proposed an efficient latent video
generation approach. [Blattmann et al.|[2023al, |(Guo et al.| [2023]] empower pre-trained text-to-image
generation models with video generation capability through inserting temporal transformer layers,
while Make-a-video [Singer et al.| [2022] introduced the 3D U-Net architecture, which decouples
attention layers into spatial, temporal, and frame-token cross-attention layers. On top of the 3D-U-Net




architecture, VideoCrafter |Chen et al.|[2024a] and SVD [Blattmann et al.|[2023b] scale up latent
video diffusion models to large datasets and achieved superior video generation capability. In this
work, the current state-of-the-art 3D U-Net-based video diffusion model Huang et al.| [2023]], Liu
et al.| [2023]], VideoCrafter2.0|Chen et al.| [2024a], referred to as “VideoCrafter” in the remaining
paper, is chosen for framework implementation and comprehensive evaluations to demonstrate our
framework’s capability.

Trajectory Controllable Video Generation Motion control is essential for generating expressive
and coherent videos. Early approaches such as Tune-A-Video [Wu et al.| [2022] and MotionDi-
rector [Zhao et al.| [2023]] achieve motion transfer by learning subject movements from existing
videos. While these methods demonstrate strong generality across diverse domains, they require
motion-specific training and can only learn motions from existing videos, limiting their flexibility
and scalability. |Chen et al.| [2023b]], Wang et al.|[2023a]] employ dense signals (e.g., depth maps,
keypoints) to condition motion generation. However, these signals still correspond to non-editable
motions extracted from existing footage, offering little room for customization. To tackle this
problem, [Wang et al.|[2023b], [Yin et al.| [2023]], Deng et al.|[2023]], Wang et al.| [2024] leverage
large-scale datasets of video-sparse motion signal (e.g., trajectories or bounding boxes) pairs as
fine-tuning datasets to achieve sparse control signal interpretation through specialized training recipes
or model-specific adapters. VideoComposer|Wang et al.|[2023a] adopts a two-stage curriculum to
incorporate control and temporal consistency, and MotionCtrl Wang et al.|[2023b] introduces adapters
for camera and trajectory control. MotionBooth [Wu et al.| [2024]] enables object-level animation
after personalized training, while Motion-I2V [Shi et al.|[2024] enables drag-based trajectory control
via staged training. While these methods show promising results, they rely on dedicated training
pipelines and are often tightly coupled with specific architectures, which limits their generalization
and demands considerable computational resources for training.

Several works have attempted to achieve trajectory control under zero-shot settings. SG-
12V Namekata et al.|[2024]] achieves motion control through latent optimization and high-frequency re-
placement while being constrained to the image-to-video generation scope. FreeTraj|Q1u et al.| [2024]
blends the initial noise via bounding-box-driven patching to guide object motion with limited effec-
tiveness, as its controllability is mainly contributed by attention-level guidance. MotionZero (Chen
et al.|[2024b]| applied latent optimization alone, while requiring two-pass video generation and DDIM
inversion, making it computationally intensive. Other approaches like Trailblazer Ma et al.| [2023]]
and Peekaboo Jain et al.|[2023]] incorporate attention control through masked attention maps alone but
fall short in trajectory alignment, suffer from generating still videos or videos with deviated motions.
In contrast, ZeroTrail blends the advantages of both latent optimization and attention guidance. By
introducing a joint guidance strategy, our framework demonstrates superior trajectory adherence with
reduced inference-time computational cost.

3 Preliminaries

Video Diffusion Model. Designed for generating high-quality and diverse videos, video diffusion
models involve a tractable forward diffusion process to add noise to the Gaussian video latent
2o ~ p(xo) and learn a denoising model to revert this process in inference. To reduce computational
complexity and exploit inter-frame redundancy, the Latent Diffusion Model (LDM) Rombach et al.
[2021]] is widely adopted, which operates diffusion and denoising procedures in a latent space.

Coupled with a Variational Auto Encoder|Kingma and Welling|[2019]] composed of an encoder &
responsible for projecting original video frames x( from the pixel space R3* 7 xW into Jatent

space R4*F'xH W' ‘and a decoder D reconstructing the video frames x( from latent representations
zp back to the pixel space. The forward noise-addition process contains 7" timesteps, gradually adding
noise to data sample x(, producing a noisy latent z; through the parameterization technique:

q(xe | 24-1) :J\/($t; V1-=5 xtflvﬁtj) )
q(ze | 2o) = N (w43 vV w0, (1 — au)I) .
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Figure 2: Overview of ZeroTrail Pipeline. Given trajectory and prompt, the latent is guided through
both TPIM’s test-time optimization and SAGM’s spatial-temporal attention guidance. For each step,
the optimized latent went through high-frequency preservation postprocessing. Both modules operate
at early stages of DDIM denoising in inference time with the Diffusion U-Net being frozen, making
the pipeline tuning-free and plug-and-play for Video Diffusion Models.

where g refers to the noise-addition schedule, where ¢ is the timestep, the predefined variance schedule

is denoted as By, ay = 1 — By, @y = H::1 «;. The latent got denoised in the reverse denoising
process, obtaining a less noisy latent x;_; from the noisy input z; as

Po(@i—1 | @) =N (xe—1; po(xe,t), Bo (e, 1)) .

Here p1y and 3y are determined through a noise prediction network, generally a U-Net Ronneberger
et al.[ [2015] denoted as €y(x¢,t). The denoising model is supervised by the objective function
ming By 4, . |l€ — €o(4, t) ||§ , » where € represents the sampled ground-truth noise and 6 represents
the learnable network parameters. With the denoising model being trained under the above objective,
during inference, the latent noise at each timestep is predicted by the denoising model and gradually
generates high-quality, consistent video frames. Conventionally, mainstream LVDMs [Wang et al.
[2023c], |Chen et al.| [2024a]] employ 3D-convolution modules, spatial attention layers, temporal
attention layers, and conditioning attention layers.

Text Conditioning. To achieve textual control of the generated video scenes, text conditions are
employed in the denoising model z;_1 = fy(z¢|c) where textual query is denoted as condition c,
latents are denoted as z and the denoising model fy is generally a denoising 3D U-Net. During
inference, textual prompts are encoded using CLIP |Radford et al|[2021] into embeddings and are
then cross-attended with each frame’s latents at conditioning attention layers in denoising models.
Across the iterative denoising process, the input noise is gradually denoised and aligned toward the
desired text prompt.

Trajectory Control. The objective of video motion trajectory control is to guide the motion
trajectory of objects in generated videos accurately. The optimization objective is formulated

as L = Ep ¢ Benn(0,1),t [He —ep(ze, 1, ¢, B)||§ . Specifically, users provide a text condition ¢

along with a sequence of rectangular bounding boxes B = {((x1,7,v1,1), (2,7, y2,7)) }*, where
(z1,7,91,) and (z2,f,yo,r) denote the top-left and bottom-right coordinates of the fth frame’s
bounding box respectively. Here, N is the total number of frames. The bounding box set B encodes
the desired object trajectory as a sequence of bounding boxes across the video frames.

4 Method

In this section, we introduce the ZeroTrail framework, which operates completely in the early denois-
ing stage under zero-shot settings, eliminating the need for costly fine-tuning to control object motion



trajectories in generated videos. The section is organized as follows: we first describe the Trajectory
Prior Injection Module (TPIM) and its constraints and loss for effectively injecting the trajectory prior
into the latents through test-time optimization. Then, we explain the Selective Attention Guidance
Module (SAGM), which further enforces trajectory alignment and spatial consistency.

4.1 Trajectory Prior Injection Module

Inspired by empirical studies |[Ho et al.| [2020] and |Cao et al.|[[2023]], Jain et al.| [2023]], the initial
noisy latent has a significant effect in determining the generated video frames’ scene construction,
while frame-token cross-attention layers are mainly responsible for bridging the textual prompt and
corresponding objects in generated video frames. The Trajectory Prior Injection Module (TPIM) is
designed to exploit this property by injecting user-specified trajectories into the noisy latent during
early denoising steps through test-time latent optimization based on a contrastive trajectory loss.
Following literature Namekata et al.|[2024]], we leverage the high-frequency preservation technique
to refine visual quality through latent-level high-frequency replacement. By injecting trajectory
guidance into noisy frame latents, TPIM steers the denoising process naturally, providing strong
priors for effective trajectory control.

4.1.1 Contrastive Trajectory Prior Loss

Formally, let z(Y) € RE*H*W denote the latent at diffusion step ¢ and let B; = [z, Yo, 1, y1] be
the user-drawn bounding box for frame f € {1,..., N}. Foreground and background indicator
functions are defined as

L, (x,y) € By
1 =
fe, (7,9) {O, otherwise

Frame—token cross-attention scores are denoted by A¢(x,y,t). To encourage higher attention along
the trajectory while suppressing it elsewhere, a contrastive loss is adopted. Positive and negative pools
are constructed by selecting the top-Kj, and top- K, scores inside and outside the box, respectively:

Pf = TOpKin{Af(x’y>t) | ]lfgf (‘T7y) = 1}7
Nf = TOpKout{Af(xvyvt) | ]lfgf ($7y) = O}

g, =1 —Tg,.

Their averages are ,uj{ = %Zaepf aand py = %Zae N @ With ,uj{ and i, denoting the

out

average values of these two sets and 7 a temperature hyper-parameter, the InfoNCE loss for the frame
fis
exp(pj[ /7)

Lr=—1
f o8 exp(u?/T) + exp(,u; /7)

And the overall objective for all frames is
1N
Ectr = N }; Ef :

Starting from the first denoising step, the latent is updated for five iterations by gradient descent
according to z(**t1) = z(t:5) — 'V, L., where s € [0, 5], 7 is the learning rate and V, L. is the
gradient of the loss function described above.

4.1.2 FFT-based Latent Visual Artifact Patching

To mitigate visual artifacts introduced by latent updates, the amplitude of the high-frequency Fourier
components of z(*?) is optionally replaced by that of the original z(**~1) following the equation
below:

Fiov = FFTop(z")) o H,,
]:hi%,hz‘—m = FFT2D(Z(t’Fl)) ®(1-H,),

z

2" = IFF Top(Fyt) + Fyt 1))



Where FFTyp / IFFT2p denote the 2-D (inverse) Fast Fourier Transform applied frame-wise, and H.,
be the frequency response of a 2-D low-pass Butterworth filter with cut-off frequency ~. The latent
postprocessing is done after all optimization epochs and is involved in the first ¢ € [1, 5] denoising
steps, preserving the target motion encoded in the low-frequency part of z(-) while reinstating the
high-frequency details from z(**—1),

4.2 Selective Attention Guidance Module

SAGM operates on the five early iterations and modifies both token—frame and frame—frame cross-
attention layers in the denoising U-Net Rombach et al.|[2021] module.

4.2.1 Spatial Frame-Token cross-attention

Given queries Q € RV *dnxd from spatial tokens and keys K € RN7*IWIxd from prompt tokens,

. . _ QK] Npxdp X |W| _
the cross attention map is computed as As = Softmax( T ) € RYrxan ,where dp, = w x h

is defined by the spatial resolution at specific attention layers. d refers to the feature dimension of
both keys and queries, |W| is defined as 77 for CLIP |[Radford et al. [2021] text embeddings. For
simplicity, the batch size and attention head dimensions are omitted.

The denoising path is then guided through the adaptive editing of the frame-token cross attention
layers for the attention maps A% € RN *dn related to specific prompt word tokens, whose indices
are represented as ¢ € [0, |W]]. Given the bounding box B, the frame-token cross attention guidance
is defined as:

]-_Cun (x7y>€Bv
Cows otherwise

W(z,y) = {

Ss(z,y) = {07 otherwise,

where (z,y) are indices of the attention map and g(-, ) refers to Gaussian map with size (o, =
by /2,0, = by/2). C is dynamically scaled according to the current attention map size a,, X aj, and

number of prompt word tokens |W,|: C' = W Given subject prompt token indices, each
w Xap X Wy

cross-attention score at location (z,y) € As is adjusted as A% (z,y) = As(z,y)OWs(z, y)+Ss(z, v),
where © refers to element-wise product (Hadamard Product), scaling the cross attention map with
weight matrix W.

Temporal Frame-wise cross-attention The temporal frame-wise attention guidance is introduced
to better regulate temporal correlation and consistency. Different from frame-token cross-attention,

. . . _ QK[ dp X NeXNp
the temporal attention map is obtained through A; = Softmax ( 7a )eR .

The spatial dimension of the attention map is denoted as dj, Q; € RdhXN rxd [, € RnXNrxd,
The cross-attention score at location (x,y) € A is then adjusted as AL (x,y) = Ai(z,y) © We(z,y),
where Wy (-, -) is defined as the same as W(, -).

5 Experiments

Overview. The evaluation is conducted both quantitatively and qualitatively to assess the perfor-
mance and effectiveness of our framework thoroughly. VideoCrafter Chen et al.|[2024a] is selected as
the base video diffusion model in our experiments. To evaluate ZeroTrail’s trajectory controllability,
recent works including FreeTraj|Qiu et al.| [2024]], TrailBlazer|Ma et al.|[2023]], and Peekaboo [Jain
et al.|[2023] are compared. MotionZero |Chen et al.|[2024b] is excluded from comparison due to the
absence of the official implementation at the time of this study.

Implementation Details. All experiments are conducted on a single NVIDIA A100 GPU. We adopt
DDIM sampling |Song et al.|[2020]] with 50 steps for video generation. During the first 5 denoising



Prompt: A kangaroo running in the Australian outback. Prompt: A bear climbing a tree after spotting a threat.
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Figure 3: Qualitative comparison result on complex trajectory control cases. ZeroTrail demonstrates
better trajectory guidance capability while retaining high-quality scenes compared to other SOTAs.

steps, both TPIM and SAGM modules are jointly applied. For TPIM, the latent is optimized for 5
epochs during denoising with an initial learning rate of 3.5 x 10~2 and linearly decaying to zero.
In the contrastive loss, the temperature is fixed as 7 = 0.07 and the sampling ratios are selected as
Pin = 0.25 (inside the guidance region) and poy = 0.1 (outside). High-frequency Fourier amplitudes
of the optimized latent are partially replaced by those of the original latent to suppress artifacts.
Specifically, we resample 25% of the spatial spectrum (ds = 0.25) and 10% of the temporal spectrum
(d¢ = 0.10). For SAGM, it is similarly activated during the first 5 denoising steps. ¢, is set to 0.01
for both token-frame and temporal cross attention layers while c; is set to 0.25. The remaining steps
proceed without intervention.

Following prior works, a standard set of 33 prompts covering diverse subjects and motions is
adapted for evaluation, with 8 simple motion trajectories and 15 complex ones featuring diverse and
compound movement patterns. All visualizations throughout the paper are uniformly sampled from
the 16 generated frames. The complete list of prompts and trajectories are provided in the appendix.

5.1 Main Results.
5.1.1 Qualitative Analysis.

We demonstrate qualitative experiment results with simple and complex trajectories in Fig[3]and
Fig[5] The attention guidance effect is visualized in Fig.[d] As shown in the graph, our framework
enables effective trajectory control compared to the base model, reflected by the evidently-guided
activations of cross-attention layers.
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Prompt: A balloon drifting in a clear sky.

Figure 4: Attention map visualization of the base model and our framework’s result. The specified
trajectory is visualized as the red bounding box. Zoom in for a better view.

Fig. [5]demonstrates the result of cross comparison on a simple trajectory: moving from bottom-right
to top-left. Our framework precisely guides the parrot flying towards the specified trajectory, while in
FreeTraj’s and Trailblazer’s results, the parrot is anchored in the central position throughout the video.
For Peekaboo, the motion roughly aligns with the bounding box’s direction, while its visuals are
noticeably inferior. In terms of complex trajectory setting, our framework significantly outperforms
all existing methods as well. From Fig. 3] our method effectively controls the objects’ motion for
any trajectory. On the contrary, FreeTraj failed to align the object with the bounding box, while
Trailblazer’s results are mostly stationary or random. Peekaboo demonstrated some controllability in
the left-hand side L-shape trajectory case, while its visuals demonstrated strong artifacts.



id
=
s
2
fra

Peekaboo

Figure 5: Qualitative comparison result on simple trajectories. ZeroTrail shows better trajectory
guidance capability while retaining high-quality scenes compared to others.

Visual Quality Metrics
Method Align T Consistency 1 PickScore 1

Trajectory Control Metrics
Method mloU 1T AP@501 Central Dist. |

ZeroTrail 33.25 0.1447 7.61% ZeroTrail  0.3102 0.9620 20.792
FreeTraj 24.38 0.0469 11.52% FreeTraj 0.3072 0.9617 20.648
TrailBlazer 18.65 0.0717 17.10% TrailBlazer 0.3042 0.9698 20.539
Peekaboo 13.31 0.0628 18.33% Peekaboo  0.2939 0.9338 19.322

Table 1: Quantitative comparison between ZeroTrail and baselines. The best results are in bold. All
metrics except Central Distance expect higher values for better performance.

5.1.2 Quantitative Analysis.

To evaluate trajectory controllability, mIoU, AP50, Center Distance are chosen as main evaluation
metrics. mloU evaluates the intersection-over-union between detected bounding boxes from video
frames and user-specified ones. AP50 evaluates the percentage of detected bounding boxes that
overlap with the user-specified ones over 50%. Center Distance evaluates the distance between the
detected bounding box’s central point to that of the ground truth as percentage values, evaluating
the trajectory deviations. OWLViT-Large Minderer et al.|[2022] is employed as the object detector
to generate bounding boxes, supporting the computation of the above metrics. For visual quality,
we applied the CLIP score [Hessel et al.| [[2021]] to verify the text-video alignment (Alignment) and

inter-frame consistency (Consistency). PickScore [2023] is applied to evaluate user
preferences over videos following previous works|[Wu et al.|[2023alb], (Chen et al] [2024b].

As shown in the Tab.[I} our framework outperforms existing methods in terms of trajectory control
effectiveness in every aspect. Through mIoU and AP50 metrics, it is clear that the size and absolute
position of the generated moving objects are significantly closer-matched with the user-specified
bounding box sequences, i.e., sparse trajectory signals, demonstrating the fact that our joint TPIM-
SAGM attention guidance optimization design ensures the generated objects of interest are kept inside
the specified bounding boxes. In addition to demonstrating leading trajectory control capabilities, our
framework maintains high visual quality, as shown in Tab. [T} Despite Trailblazer achieving slightly
better performance in the Consistency metric, this may be attributed to its limited ability to generate
realistic motion when handling complex trajectories, preserving internal frame similarity.

We further compared our framework’s average running time with baselines in Tab.[2} As Trailblazer
and Peekaboo utilize ZeroScope [Khachatryan et al| [2023]] and FreeTraj applies VideoCrafter (Chen|
as the base model separately, we report the increased runtime percentage for fair
comparison. ZeroTrail introduces a modest inference time increase, which is a reasonable trade-
off for improved motion controllability. Since MotionZero lacks a public implementation, we
conservatively estimate its runtime as roughly twice that of the base model, based on its multi-stage
pipeline involving meta-video generation, DDIM inversion, and final video synthesis.

5.2 Ablation Study.

Below, we report major ablation experiment results. More ablations on hyperparameters are attached
in the appendix.

Impact of Module incorporation. Tab. 3| demonstrates the result of ablation experiments on
different modules of ZeroTrail. According to the table, both TPIM and SAGM play crucial roles
in ensuring superior trajectory guidance capability. The SAGM has the most significant impact on
aligning the moving object towards the bounding box center, as removing SAGM would cause the



Method 7T FT TB PB MZ'
ExtraTime 32.1% 282% 243% 20.5% 100%

Table 2: Running time comparison between ZeroTrail (ZT) and baseline methods. “FT”, “TB”, “PB”,
and “MZ” represent FreeTraj, TrailBlazer, Peekaboo, and MotionZero. Results are reported as the
percentage of additional inference time. MotionZero’s runtime is approximated based on its design.

Central Distance metric to increase by 7.82%. Additionally, both TPIM and SAGM have a significant
impact on trajectory control, as disabling TPIM, the mloU scores drop from 0.3325 to 0.2719 and
from 0.1447 to 0.0687 in AP@50, while removing SAGM causes the mIoU to decrease to 0.2139
and AP@50 drops to 0.0580. Overall, both modules are crucial for achieving effective trajectory
control in our framework.

Module Setting mloU 1 AP@501 Center Dist. (%) |

TPIM + SAGM  0.3325  0.1447 7.61%
w/o TPIM 0.2719  0.0687 8.98%
w/o SAGM 0.2139  0.0580 15.43%

Table 3: Ablation study on the impact of TPIM and SAGM modules in our framework. The best-
performing metrics are stressed in bold. Apart from Center Distance, all metrics expect higher values
for better performance.

Impact of FFT-based Latent Postprocessing. We further conducted an ablation experiment
on the effectiveness of the FFT-based latent visual postprocessing module. As shown in Tab. 4]
incorporating the FFT-based latent postprocessing improved all three visual metrics, demonstrating
that postprocessing optimized latent plays a crucial role in improving the generated video’s visual
quality.

Module Setting Align T Consistency T PickScore 1

with FFT Fix 0.3102 0.9620 20.792
w/o FFT Fix 0.3094 0.9606 20.768

Table 4: Ablation study on the visual quality impact introduced by the FFT-postprocessing Module
(FFT Fix). The best-performing metrics are stressed in bold. All metrics expect higher values for
better performance.

6 Conclusion

In this work, we introduce ZeroTrail, a novel zero-shot trajectory control framework that achieves
arbitrary object trajectory control that is applicable to diverse video diffusion models. Different from
existing works, which either require computationally intensive fine-tuning or suffer from suboptimal
motion controllability, our trajectory control framework is effective, plug-and-play, and does not
require extra fine-tuning of the foundational model. By guiding the denoising process through the
joint application of both the Trajectory Prior Injection Module and the Selective Attention Guidance
Module, our framework achieved superior trajectory guidance, excels previous works in terms of
efficacy and generality, which is demonstrated by extensive experiments.
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A Appendix

A.1 Overview

In this section, we supply additional ablation experiments on the implementation of the ZeroTrail
pipeline. The code will be publicly available after the paper’s acceptance. We organize this section
as follows. Firstly, we provide ablation studies regarding the choice of hyperparameters and their
impact on our framework. Secondly, we provide the details of the evaluation dataset used in this work.
Finally, we discuss limitations and potential future works, along with this work’s broader impacts.

A.2 General Ablation Studies

User Study We randomly picked 5 prompts that are used for quantitative evaluation. For each
selected prompt, 4 videos generated with simple trajectories and 4 videos produced under the guidance
of complex trajectories are randomly chosen, resulting in a total of 40 videos per model. Participants
were requested to evaluate the videos generated by each method and rate the videos across three
criteria: Visual Quality, Trajectory Control, and Consistency, scaling from 1 to 5. As shown in Tab.[5]
our framework consistently outperforms all baseline methods by a significant margin, highlighting
the effectiveness of our approach.

Method Appearance? Consistency T Control 1

Peekaboo 3.15 2.61 3.45
Trailblazer 3.96 2.85 3.61
FreeTraj 4.15 3.21 3.95
Ours 4.35 3.97 4.52

Table 5: User-study averaged ratings on Appearance Quality, Temporal Consistency, and Trajectory
Controllability. Best-performing metrics are stressed in bold text, and our method is highlighted in
gray. All metrics expect higher values.

Ablation on Intervened Steps. In this ablation, we study the impact of the number of intervened
initial denoising steps on our framework’s performance. As shown in Fig. [f] the rooster remains
still across the video when ZeroTrail is applied on a small number of denoising steps, while as the
incurred denoising step rises to 5, our framework demonstrated noticeable trajectory controllability as
the rooster moves naturally according to the trajectory bounding box while maintaining its appearance
consistent. As the number of interventions continues to increase, despite the trajectory control
remaining valid, visual artifacts begin to appear. When the intervention step is 10, the chicken only
had its head visible in the video. For the extreme case of 20 denoising steps, a texture-like visual
artifact is clearly visible across the video frames. To conclude, a smaller step of denoising intervention
could lead to inadequate trajectory controllability, while excessively high intervention steps could
cause the degradation of visual quality and subject consistency. Therefore, we set our framework’s
denoising intervention steps to 5.

A.3 Ablation Studies on TPIM

Ablation on Learning Rate. The impact of TPIM’s test-time latent optimization learning rate
value on overall generation quality is evaluated in this ablation experiment. As illustrated in Fig.
using suboptimal learning rates could impair trajectory guidance or visual quality. In the first row,
an insufficiently small learning rate fails to enforce the moving trajectory, as evidenced by the lion
initially moving towards the opposite direction as specified by the intended right-to-left trajectory.
In contrast, applying an adequate learning rate of 0.035 yields natural motion with more precise
trajectory control, as the lion’s location and scale are better aligned with the specified bounding boxes.
However, further increasing the learning rate introduces visual artifacts, as the vertical bar one shown
in the third row. The ablation demonstrates that an optimal learning rate value is required to achieve
the balance between trajectory adherence and visual fidelity. In our framework, the learning rate is
set to 0.035.



Ablation on optimization steps The impact of the number of test-time latent refinement epochs on
generation quality is examined in this ablation study. As shown in Fig.[8] using a few optimization
steps (e.g., 3) results in insufficient guidance of the object’s trajectory. Visualized in the first row,
the fish fails to follow the specified path, remains largely misaligned with the bounding boxes
throughout the sequence, and has its head turned backwards in the middle of the generated video,
contradicting the specified trajectory. On the contrary, increasing the number of optimization steps
could result in better trajectory adherence but come at the cost of suboptimal subject preservation
capability. In this case, the fish exhibits noticeable appearance changes across frames, suggesting
overfitting to the trajectory signal. In contrast, using 5 optimization steps offers a more favorable
balance, achieving satisfactory trajectory control while maintaining the subject’s visual consistency
and quality. Accordingly, our framework adopts 5 optimization steps by default.

Ablation on Parameter p;, The impact of the within-bounding box sampling ratio p;,’s value is
studied in this ablation experiment. Setting pji, too high could lead to visual artifacts such as washed-
out or overexposed colors, possibly due to excessive alternation during the test-time optimization
process. Conversely, setting it too low may weaken the trajectory prior injection, causing suboptimal
control over the object’s size and position, reducing the trajectory alignment’s effectiveness. In Fig.[9]
when py, is set to 0.1, the rhino’s head is clearly outside the bounding box at the first frame. In
contrast, with p;, = 0.25, the rhino’s position is much better constrained within the target region
throughout the video. Although a high value, such as 0.4, might lead to stricter spatial adherence, it
may also introduce visual artifacts such as the background desaturation shown in the third row. This
highlights the importance of selecting appropriate p;, to achieve a balance between visual quality and
effective trajectory control. In our framework, the default value of p;, is set to 0.25.

Ablation on Parameter p,,; The impact of the outside-bounding box sampling ratio p,, is analyzed
in this ablation experiment. Setting poy: too high can destabilize the visual generation process, which
might be due to the introduction of excessive attention correlation from unrelated regions. As shown
in Fig. when p,, is increased to 0.15 and 0.20, the visual quality deteriorates noticeably—blurry
artifacts emerge and roosters begin to appear along the entire motion trace, indicating chaotic
generation.

Conversely, setting poy too low may weaken trajectory guidance. In the first row, where poy,; = 0.05,
the rooster’s movement and size slightly deviate from the specified bounding box comparing to the
case where pyy is set to 0.1, and the subject consistency is compromised, which is evidenced by
visual artifacts such as a third foot appearing in the second frame. These observations highlight the
importance of selecting an appropriate p,, to achieve both visual coherence and accurate trajectory
alignment. In our framework, we use po, = 0.1 as the default setting.

A.4 Ablation Studies on SAGM

Ablation on parameter c,, The coefficient c,, controls the strength of the foreground attention
guidance. A larger value reduces the differentiation between foreground and background attention,
which could negatively impact localization. As illustrated in Fig.[IT] when c,, = 0.01, the rooster’s
position in the first frame shows a slight deviation compared to other settings, indicating less precise
localization. In contrast, setting c,, too high (e.g., 0.1) destabilizes the generation process, resulting
in blurry artifacts and incomplete object shapes, such as a malformed chicken body. These findings
suggest that excessively amplifying the attention contrast can compromise visual fidelity and frame
stability. Based on experimental observations, we set ¢,, = 0.01 in our pipeline to maintain a balance
between spatial precision and generation stability.

Ablation on parameter c; We investigate the impact of the weighting coefficient cs, which scales
the Gaussian mask. As shown in Fig. [I2] setting ¢, too low compromises trajectory adherence. In the
0.1 case, the rooster struggles to follow the trajectory in the initial frames and progressively detaches
from the bounding box in later frames, indicating insufficient motion guidance. On the other hand,
increasing cs excessively can lead to visual artifacts. In the 0.4 case, blurry artifacts appear in the
foreground, partially obscuring the rooster and degrading visual fidelity. These results suggest that c,
must be carefully tuned to balance trajectory precision and appearance quality. Empirically, we find
that setting c¢; = 0.25 offers the best trade-off, enabling accurate control while preserving clean and
coherent visual outputs.



A.5 Evaluation Dataset Details

In this section, we list all prompts used for evaluating the model. Similar to MotionZerdChen et al.
[2024b], FreeTrajQiu et al.|[2024], and TrailBlazefMa et al.| [2023]], we applied 33 diverse prompts
featuring various subjects and motions in the evaluation dataset:

* A woodpecker climbing a tree trunk.

* A squirrel maneuvering on a tree after gathering nuts.

* A bird snatching fish from water.

* A frog leaping to catch a fly.

* A parrot flying among treetops.

* A squirrel jumping between trees.

* A rabbit digging in its warren.

* A satellite orbiting Earth in outer space.

* A skateboarder performing tricks at a skate park.

* A leaf drifting gently.

* A paper plane gliding in the air.

* A bear climbing a tree after spotting a threat.

* A duck diving to search for food.

* A kangaroo hopping on a gentle slope.

* An owl swooping to catch prey at night.

* A balloon drifting in a clear sky.

* A bus traversing London streets.

* A plane flying high in the sky.

* A helicopter hovering near city buildings.

* A streetcar trundling along tracks in a historic district.

* A rocket launching from a launchpad.

* A deer bounding in a snowy field.

* A horse galloping in a meadow.

* A fox prowling in a forest clearing.

* A swan floating gracefully on a lake.

* A panda munching bamboo in a bamboo forest.

* A penguin waddling on an iceberg.

* A lion prowling in savanna grass.

* An owl gliding silently at night.

* A dolphin just breaking the ocean surface.

* A camel trudging in a desert landscape.

* A kangaroo running in the Australian outback.

A colorful hot air balloon floating in the sky.

Following previous works, we applied 8 simple base trajectories and 15 complex, diverse trajectories
to evaluate the effectiveness and robustness of our framework as shown in Fig. [I3] Fig. [I4] and

Fig.



A.6 Limitations and Future Works

The plug-and-play, model-agnostic design of our framework made it applicable to diverse video
diffusion models. As current video diffusion models still occasionally suffer from generating visual
artifacts and misunderstanding the textual prompt, the framework could still generate undesirable
videos due to the constraints of the base model’s capability.

Despite demonstrating superior trajectory controllability and comparable visual quality, the hyperpa-
rameters applied in our implementation are empirical values that are suitable for most cases. Some of
them might need to be adjusted when porting the framework to a new base model to achieve optimal
performance.

Currently, we achieve effective trajectory controllability through user-specified trajectories, which
may not be aligned with the description and underlying semantical of the textual prompt. For instance,
the user may instruct the model to generate objects described as “standing still” while also expecting
the object to follow along the trajectory. In certain cases, such a contradiction may prevent the model
from producing desirable results, and achieving semantically-aware trajectory control will be the
direction of our future work.

A.7 Broader Impacts

As our framework applies to video diffusion models, it may inherit the societal and public impacts,
both positive and negative, of those with video diffusion models and generative video editing
technologies. Additionally, owing to its plug-and-play and model-agnostic design, the introduction
of ZeroTrail could facilitate the application and adaptation of Generative-Al-based content creation,
potentially accelerating innovation and productivity within the creative industries.

Figure 6: Ablation study on total intervened denoising steps from 0 to 20. Zoom in for a better view.



Figure 7: Ablation study on TPIM module’s learning rate from 0.02 to 0.05. Zoom in for a better
view.

Figure 8: Ablation study on TPIM module’s optimization step. Zoom in for a better view.
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Figure 9: Ablation study on loss function’s p;, parameter. Zoom in for a better view.



Figure 12: Ablation study on SAGM module’s cg parameter. Zoom in for a better view.
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Figure 13: Visualization of simple trajectories. Each row corresponds to a trajectory and is read from
left to right. Bounding boxes are in red while the moving trajectories are shown as blue arrowed lines.
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Figure 14: Visualization of the first 8§ complex trajectories. Each row corresponds to a trajectory and
is read from left to right. Bounding boxes are in red while the moving trajectories are shown as blue
arrowed lines.



I = | (i
= RS

Figure 15: Visualization of the last 7 complex trajectories. Each row corresponds to a trajectory and
is read from left to right. Bounding boxes are in red while the moving trajectories are shown as blue
arrowed lines.
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