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Abstract

Recent advances in text-to-video (T2V) generation have enabled the creation of
high-fidelity, temporally coherent clips from natural language prompts. Yet these
systems come with significant computational costs, and their energy demands
remain poorly understood. In this paper, we present a systematic study of the
latency and energy consumption of state-of-the-art open-source T2V models. We
first develop a compute-bound analytical model that predicts scaling laws with
respect to spatial resolution, temporal length, and denoising steps. We then validate
these predictions through fine-grained experiments on WAN2.1-T2V, showing
quadratic growth with spatial and temporal dimensions, and linear scaling with
the number of denoising steps. Finally, we extend our analysis to six diverse T2V
models, comparing their runtime and energy profiles under default settings. Our
results provide both a benchmark reference and practical insights for designing and
deploying more sustainable generative video systems.

1 Introduction

Text-to-video (T2V) generation has rapidly become one of the most compelling frontiers of generative
Al Proprietary systems such as OpenAlI’s Sora [Brooks et al.,2024] and DeepMind’s Veo [|DeepMind,
2025]] have showcased remarkable progress in realism and temporal consistency. At the same time,
the open-source community is closing the gap, releasing increasingly powerful models [Guo et al.|
2024, |Yang et al.,[2025, |[HaCohen et al., 2024, [Team) 2024}, [Wan et al., |2025]] that can be executed on
commodity GPUs. As these systems transition from research prototypes to real-world applications
used in creative tools and production-grade video synthesis APIs, it becomes crucial to understand
not only their quality, but also their computational costs and environmental impacts.

Generating even a few seconds of coherent video typically requires dozens of denoising steps, high
spatial resolutions, and hundreds of frames. This leads to substantial energy consumption and long
inference times. Yet, most evaluations of T2V models emphasize perceptual metrics such as sample
fidelity, FID scores, or motion smoothness, while largely overlooking latency and energy efficiency.
In an era where democratization and sustainability are key, these overlooked dimensions deserve
systematic study.

In this paper, we make the following contributions:

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: What Makes a Good
Video: Next Practices in Video Generation and Evaluation.



* Theoretical analysis. We develop a compute-bound analytical model of latency and energy
for WAN2.1-T2V [Wan et al.,[2025]], decomposing FLOPs by operator and predicting scaling
laws with respect to spatial resolution, temporal length, and denoising steps.

* Empirical validation. We perform fine-grained microbenchmarks on WAN2.1-T2V to test
these predictions, revealing quadratic scaling in spatial and temporal dimensions, and linear
scaling in steps.

* Cross-model benchmarking. We extend our analysis to six open-source T2V models,
comparing their latency and energy profiles under default generation settings.

» Implications. We discuss the consequences of these findings for efficient deployment,
sustainable model design, and future directions such as diffusion caching and quantization.

Together, these contributions provide both a modeling framework and empirical evidence for un-
derstanding the structural inefficiencies of T2V pipelines, offering actionable insights for balancing
quality and sustainability in generative video systems. All measurement results and generated videos
are publicly available here on Hugging Face, and the full benchmarking code can be found at GitHub,

2 Related Work

The environmental costs of machine learning are a new but growing field of scholarship, starting
with the pioneering study of Strubell et al., which was the first to quantify the carbon footprint of
training a large language model (LLM) [2019]. The subsequent years were marked by more work on
the carbon footprint of different types of machine learning (ML) models and the factors that influence
them [Patterson et al.|[2021]], Luccioni et al.|[2022], /Gupta et al.|[2021]], Wu et al.|[2022]]. While much
of the initial work was focused on ML model training - given that it presents a larger up-front cost in
terms of energy and carbon - recent work has increasingly focused on inference, given the ubiquity of
deploying different kinds of ML models in practice. Notably, Luccioni et al. [2024]] carried out the
first large-scale study on the energy and carbon costs for different tasks and approches, including
image generation.

While there is limited existing work on the energy demands of video generation, recent work by
Li et al. [2024], studied the energy needed to generate videos by the Open-Sora model|Zheng et al.
[2024]. They analyzed the energy required to generate 2-second videos at 240p resolution, and found
that not only is video generation significantly more energy-intensive than text generation (which
corroborates the findings of Luccioni et al. [2024])), but also that "the primary source of emissions
stemming from iterative diffusion denoising". They also found that the energy requirements of video
generation scales near-quadratically with video resolution. This is the only existing published study
on the energy requirements of video-generation, which is nonetheless limited to a single model and
type of output (i.e. video length and resolution), emphasizing the importance of having a better
understanding of this important topic. This was the motivation for our own study, which we describe
in the following section.

3 Theoretical Model of Latency and Energy

To ground our analysis, we focus on the WAN2.1-T2V-1.3B model [Wan et al.,|2025]], which serves as
our reference architecture. WAN2.1 is representative of modern latent text-to-video diffusion systems:
a pretrained text encoder provides conditioning, a timestep embedding MLP injects the diffusion
step index, a large DiT (Diffusion Transformer) performs the bulk of spatio-temporal denoising, and
a VAE decoder maps latent tensors back to pixel space. This structure is shown in Figure[I] The
same framework can be applied to other recent models with minor adjustments. WAN?2.1 is also the
most downloaded text-to-video model on the Hugging Face Hub at the time of writing, motivating its
selection for an in-depth study.

We are then able to derive a compute-bound analytical model of WAN2.1 inference, decomposing
FLOPs by operator and predicting latency and energy as explicit functions of resolution (H, W),
number of frames 7', and denoising steps .S.


https://huggingface.co/collections/jdelavande/text2video-energy-685953635f37bbb847b778ca
https://github.com/JulienDelavande/benchlab/tree/main/video_killed_energy_budget
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Figure 1: Simplified architecture of WAN2.1-T2V-1.3B.

3.1 Compute vs. Memory-Bound Regimes
On modern GPUs such as the NVIDIA H100, inference kernels can be either:

* Compute-bound, when execution is limited by arithmetic throughput (FLOP/s).
* Memory-bound, when limited by memory bandwidth.

Profiling shows that the main operators of WAN2.1 inference (self-attention, cross-attention, MLPs,
VAE convolutions) are predominantly compute-bound. GPU utilization remains saturated, and power
traces indicate negligible CPU-induced idle time. We therefore adopt a compute-bound model,
following the classic roofline formulation [Williams et al.,2009]], where latency is proportional to
total FLOPs divided by sustained throughput. This approximation is consistent with prior studies of
large-scale transformer workloads [[Shoeybi et al.,| 2019} Narayanan et al.,|2021} Hagemann et al.,
2024, Jiang et al.,[2024, [Pavani et al., [2025]).

3.2 Notation and Constants

We follow the HPC convention where one multiply-add corresponds to two FLOPs. Throughout,
H x W denotes the spatial resolution, 7" the number of frames, S’ the number of denoising steps, N
the number of DiT layers, d the hidden size, f the MLP expansion factor, m the text conditioning
length, ¢ the number of classifier-free guidance (CFG) passes, and ¢ the latent token length seen by
the DiT. A complete list of symbols, constants, and hardware parameters is provided in Appendix [A]

The DiT token length ¢ grows with the spatial (H, W) and temporal (1) dimensions of the latent grid:
TN\HW
0= (14 7) e
+ 4/16 16
3.3 Operation-Level FLOP Breakdown
The total FLOPs per video generation can be decomposed into contributions from the text encoder,
timestep MLP, the diffusion transformer (DiT), and the VAE decoder, see table [I} A full derivation

of these FLOP formulas is provided in Appendix [A] where we detail each operator (self-attention,
cross-attention, MLP, VAE, text encoder, timestep MLP).

3.4 Total FLOPs

The total FLOPs for generating a video of spatial size H x W, T frames, and S’ steps is:
Fiot = Fiext + FyvaEcony + FyaEmid-atn + 59 - (Fietr + Feross + Frapp + Fr).
We define p as the ratio between sustained and peak throughput:
_ Fotat/ Dieasured
B @peak ’



Table 1: FLOP cost of WAN2.1-T2V-1.3B components. Top: once per video. Bottom: per denoising
step (to be multiplied by ¢g.5). Symbols are defined inline in Section [3] with the complete list deferred
to Appendix [A]

Component FLOPs Notation
Once per video
Text encoder (TS) Prext Ltext (8md?€xt + 4m2d[ex[ + 4f[ex[mdt2€m) ECXK
Nec.conv
VAE decoder convolutions Z 2 k:gj ) k,(f ) k) Ci(nj)C(Eﬂt) TOHDWD  Fyag.cony
j=1
VAE decoder 2D “middle” attention 7T, (8 C2L, + 4 Lic*) FuABmidatn
Per denoising step (multiply by gS)
DiT
Self-attention (N layers) N (8¢d* + 4¢%d) Foy
Cross-attention (N layers) N (40d® + 4md?* + 4md) Flross
MLP (N layers) N (4fed?) Fuip
Timestep MLP (shared across layers) 2d,d + 14d° F;

Assuming compute-bound execution with empirical efficiency p, and letting ©pc.x denote the GPU’s
theoretical peak throughput in dense BF16, the total latency Dy, of generating a video can be
approximated as:

Rolal
H epeak

D total ~>

In practice, the H100 provides a dense BF16 peak of Opcac = 989 TFLOP/s (NVIDIA datasheet),
but this level is unattainable. The empirical efficiency p thus acts as a correction factor, reflecting
both hardware under-utilization (tile misalignment, kernel overheads, memory-bound ops) and
approximations of our latency model. For WANZ2.1 - after performing the experiments explained in
section - we obtain u ~ 0.456, consistent with sustained FLOP utilization of 30-63% reported for
large-scale transformer inference on H100s [Hagemann et al., [2024] Jiang et al., [2024} [Pavani et al.,
2025]]. We calibrated p by linear regression of measured latencies against theoretical FLOPs across
our experiments, which yielded p = 0.456 with negligible overhead and R? = 0.998.

Compute-bound regime. On the H100, main operators such as self-attention and MLPs become
compute-bound above sequence lengths of £ ~z 295 and ¢ ~ 590, respectively. Since all configurations
studied here operate at much higher token counts (/ is typically in the 10%-10° range even for moderate
resolutions such as 480 x 720 and a few seconds of video), these blocks are firmly compute-bound.
For very short ¢, the MLP dominates latency and energy, but such regimes are far below our operating
range. Full derivation and extensions to other hardware showing the same trends are given in

Appendix

3.5 Energy Model

Since sustained GPU power remains close to P, during inference, the total energy consumed Eioy:
Elotal ~ Pmax : Dtolal~

where P,y denotes the GPU’s maximum power draw (here ~ 700 W). Thus, energy and latency
scale proportionally.

3.6 Predicted Scaling Regimes

From these equations, we can anticipate distinct computational regimes:


https://www.megware.com/fileadmin/user_upload/LandingPage%20NVIDIA/nvidia-h100-datasheet.pdf

* Quadratic scaling in spatial and temporal dimensions. Since the DiT token length ¢
grows linearly with H, W, and T, the self- and cross-attention terms contribute O(¢?)
FLOPs, leading to quadratic growth in latency and energy as resolution or frame count
increases.

* Linear scaling in denoising steps. Each step applies the same sequence of IV transformer
layers, so the ideal cost scales as O(S).

* Negligible contributions from auxiliary components. The text encoder is run once per
video, and the timestep MLP adds only a small overhead per step. Likewise, the VAE
decoder scales linearly with voxel count 7' x H x W and is quickly dominated by the
quadratic DiT cost.

In summary, the theoretical model predicts that WAN2.1 inference is transformer-dominated and
compute-bound, with quadratic regimes in spatial and temporal dimensions, linear dependence on
denoising steps, and minor overhead from conditioning networks. These predictions will be validated
against empirical measurements in Section 5]

4 Methodology

Our methodology combines two complementary perspectives. First, we perform controlled micro-
benchmarks on WAN2.1-T2V-1.3B, our reference model, to validate the scaling regimes predicted
by the theoretical model (Section E]) Second, we benchmark a diverse set of recent open-source
text-to-video models under default settings, to situate WAN2.1 within the broader ecosystem.

4.1 Hardware and Measurement Protocol

All experiments were conducted on a dedicated NVIDIA H100 SXM GPU (80GB HBM3) paired
with an 8-core AMD EPYC 7R13 CPU, with no co-scheduled jobs. We measured GPU and CPU
energy using CodeCarbon [Courty et al., 2024, which interfaces with NVML and pyRAPL, and
estimated RAM energy using CodeCarbon’s default heuristidﬂ

To reduce noise, each measurement included two warmup iterations, followed by five repeated runs.
Inference used the Hugging Face Diffusers library jvon Platen et al.|[2022]] with default generation
parameters. We relied on the standard optimizations provided by recent PyTorch releases, such as
fused kernels and FlashAttention [Daol 2023]], which are automatically enabled.

4.2 Controlled Scaling Experiments on WAN2.1-T2V-1.3B

To validate the theoretical model, we systematically varied the three key structural parameters:
resolution, number of frames, and denoising steps. Since the text encoder always pads or truncates
prompts to a fixed length of 512 tokens, the specific choice of prompt does not affect runtime. We
therefore fixed a single prompt and applied the same warmup-and-repetition protocol as above to
isolate structural scaling laws.

 Spatial resolution: from 256 x256 to 3520 1980, both dimensions divisible by 8 (model
constraint). Frames and steps fixed.

¢ Temporal length (frames): from 4 to 100 in increments of 4 (model constraint). Resolution
and steps fixed.

* Denoising steps: from 1 to 200. Resolution and frames fixed.

For each configuration we logged total latency (seconds) and energy for each hardware component
(GPU /CPU /RAM).

4.3 Cross-Model Benchmark

To provide a bird’s-eye view of energy and latency costs across current systems, we selected a diverse
set of models spanning different architectures and parameter scales (Table[2)), focusing on those that
are among the most downloaded and trending on the Hugging Face Hub at the time of writing.

"https://mlco2.github.io/codecarbon/methodology . html#ram


https://mlco2.github.io/codecarbon/methodology.html#ram

For this benchmark, we generated 50 different prompts per model. Each prompt was measured with
the protocol above (2 warmups, 5 runs), yielding robust averages and standard deviations that capture
both runtime noise and input variability.

* AnimateDiff [Guo et al.|[2024](License ) - lightweight motion-layer diffusion.
* CogVideoX-2b/5b [[Yang et al., | 2025] (License) - cascaded base + refiner stages.

LTX-Video-0.9.7-dev [HaCohen et al., 2024](License) - autoregressive temporal modeling.

* Mochi-1-preview [Team) [2024](License) - large-scale diffusion optimized for motion
realism.

WANZ2.1-T2V (1.3B and 14B) [Wan et al.| [2025](License) - high-resolution latent diffusion
with DiT backbone.

Table 2: Default generation settings for each model (from Hugging Face model cards).

Model Steps  Resolution (HxW) Frames FPS
AnimateDiff 4 512512 16 10
CogVideoX-2b 50 480720 49 8
CogVideoX-5b 50 480x720 49 8
LTX-Video 40 512x704 121 24
Mochi-1-preview 64 480x 848 84 30
WAN2.1-T2V-1.3B 50 720x 1280 81 15
WAN?2.1-T2V-14B 50 720%x 1280 81 15

We did not assess perceptual quality to isolate compute behavior; instead, these experiments confront
the predicted quadratic and linear regimes (Section [3) with actual scaling laws and scheduler-induced
deviations.

5 Empirical Findings

We now compare the theoretical predictions of Section [3| with empirical measurements - first by
conducting a fine-grained validation on WAN2.1-T2V-1.3B and comparing measured energy and
latency against theoretical curves as resolution, temporal length, and denoising steps vary. We then
situate these results in the broader context of other open-source video generation models.

5.1 Validation on WAN2.1-T2V-1.3B

In this section we focus exclusively on GPU energy and latency, since GPU accounts for 80-90% of
the total consumption and dominates inference cost. Figures show theoretical predictions (stacked
areas by operator: self-attention, cross-attention, MLP, VAE, text encoder, timestep MLP) with
empirical measurements overlaid as points with error bars.

5.1.1 Spatial Resolution

Increasing the resolution from 256256 to 3520 1980 (frames = 81, steps = 50) induces quadratic
growth in both latency and energy, as predicted by the compute-bound model. Figure 2] compares
theoretical estimates (stacked by operator) with empirical measurements, showing strong agreement
across the full range. At very high resolutions, empirical values slightly undershoot predictions,
suggesting a mild increase in effective efficiency p due to better kernel saturation and overhead
amortization. The VAE contribution remains negligible compared to the DiT blocks.

5.1.2 Temporal Length (Frames)

Varying the number of frames from 4 to 100 (resolution - 720 x 1280 and steps - 50 fixed) also
induces quadratic growth in both latency and energy, as shown in Figure[3] This behavior directly
follows from the quadratic dependence of attention on the token count ¢. The model closely tracks
empirical results, with errors reported in Table


https://huggingface.co/spaces/CompVis/stable-diffusion-license
https://huggingface.co/zai-org/CogVideoX-5b/blob/main/LICENSE
https://huggingface.co/Lightricks/LTX-Video/blob/main/LTX-Video-Open-Weights-License-0.X.txt
https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/apache-2.0.md
https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/apache-2.0.md
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Figure 2: Empirical results (points) vs. theoretical predictions (stacked areas per operator) as a
function of resolution. Both energy and latency follow the predicted quadratic regime.
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Figure 3: Empirical results (points) vs. theoretical predictions (stacked areas per operator) as a
function of temporal length. Both metrics follow the quadratic regime predicted by the model.

5.1.3 Denoising Steps

In contrast to resolution and frame count (resolution - 720 x 1280 and frames - 81 fixed), scaling with
the number of denoising steps is perfectly linear, exactly as predicted by the theoretical model. Each
additional step applies the same NV transformer layers, leading to a cost that grows proportionally
with S. Figure ] shows near-perfect alignment between predictions and measurements, with errors

below 2% (Table[3).
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function of denoising steps. Both energy and latency scale linearly with .S, in near-perfect agreement
with the compute-bound model.



Table 3: Mean percentage error (MPE) between theoretical predictions and empirical measurements.

Energy Latency

Resolution scaling  11.6% 14.0%
Temporal length 6.6% 10.5%
Denoising steps 1.9% 1.9%

5.2 Cross-Model Comparison

Finally, we compare average GPU energy consumption, latency, and component-wise energy shares
across seven open-source text-to-video models under their default generation settings (Figure [5).
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Figure 5: Cross-model comparison of energy and latency. Top: GPU energy and latency (log scale,
with std). Bottom: relative contributions of GPU, CPU, and RAM.

We observe orders-of-magnitude disparities: AnimateDiff requires only 0.14 Wh in total, while
WAN2.1-T2V-14B consumes over 415 Wh, a factor of nearly 3000x. Latency follows a similar
trend, with lightweight models producing clips in less than a second, while large-scale architectures
such as WAN2.1-14B or Mochi require several minutes of inference. These differences stem from:

* Model size: larger models (WAN?2.1-14B, Mochi) process more parameters per step.

* Sampling steps: AnimateDiff runs in 4 steps vs. 60-64 for others.

* Video length: frame count and FPS vary significantly.

* Architectural complexity: cascaded pipelines (CogVideoX) require multiple stages.
As shown in the bottom panel, GPU consistently dominates energy consumption (>80%) across all

models, confirming a compute-bound regime with high GPU utilization. CPU and RAM contributions
remain secondary, though slightly more pronounced in cascaded or multi-stage pipelines.



Table 4: Cross-model average latency and energy consumption (default settings). All values are
reported as mean = std.

Model Latency (s) GPU (Wh) CPU (Wh) RAM (Wh)
WAN2.1-T2V-14B 1875 £ 2.1 359.7 £ 0.5 35.6 £4.0 19.8 +£0.02
WAN2.1-T2V-1.3B 410 £ 0.5 78.8 £0.1 7.4+04 4.3 +0.01
Mochi-1-preview 263 +0.5 44.74+0.2 4.6 +0.01 2.8 +£0.01
CogVideoX-5B 124 +0.4 21.6 £0.05 2.4+0.03 1.3+ 0.004
CogVideoX-2B 50.6 £ 0.2 8.34+0.03 0.84 +0.04 0.53 +0.002
LTX-Video-0.9.7-dev 9.7 +0.01 3.16 + 0.006 0.32 +0.002 0.19 +0.001
AnimateDiff 0.68 +0.002 0.1154+0.001 0.016 +0.0001  0.008 + 0.00003

6 Discussion

Our results confirm that WANZ2.1 inference operates in a compute-bound regime, where latency
and energy scale quadratically with spatial (H, W) and temporal (T") dimensions, and linearly with
denoising steps (S). The close match between theory and measurement validates the analytical model
and provides clear guidance for practitioners.

Implications for efficiency. Quadratic scaling in H, W, and T means that even modest increases
in resolution or video length incur steep costs: doubling any of these dimensions in isolation yields
~ 4x more compute, while scaling multiple dimensions compounds multiplicatively (e.g., H and W
doubled — 16 x). Thus, output size control is a powerful lever: reducing spatial or temporal length
often saves more than architectural changes. In practice, offering presets (e.g., “low resolution, low
frames” vs. “high fidelity”’) balances user needs with energy cost.

Validated linear regime in steps. In contrast, denoising steps scale linearly, with measured costs
matching theoretical predictions once empirical efficiency  is applied. This makes .S a reliable knob
for latency—quality trade-offs: halving steps roughly halves both latency and energy.

Opportunities for model-level improvements. The public Hugging Face implementation of
WAN?2.1 lacks inference-time optimizations, but the original paper suggests effective techniques:
(1) diffusion caching, reusing redundant attention/CFG activations for up to 1.62x savings, and (ii)
quantization, using FP8/INT8 mixed precision for ~ 1.27x speedup without loss. Other avenues
include step pruning, low-rank attention, and kernel fusion to better exploit GPU tensor cores.

Quality evaluation as a complementary dimension. Beyond efficiency, evaluating the quality of
generated videos remains a key challenge. Existing strategies range from human preference studies
(often with Elo-style scoring) [Zhang et al.l 2025], to large-scale crowdsourcing benchmarks, to more
recent proposals leveraging multimodal LLMs for automated quality assessment [Ghildyal et al.,
2024]. These approaches highlight complementary aspects - perceptual fidelity, temporal coherence,
and semantic alignment - and could eventually be combined with efficiency metrics to provide a fuller
picture of sustainability—quality trade-offs. In this context, our open-source evaluation pipeline can be
used alongside existing benchmarks to jointly assess perceptual quality and energy consumption. This
enables researchers to explore and quantify the trade-offs between visual fidelity and computational
cost in a systematic and reproducible manner.

Broader implications. Video diffusion is far more costly than text or image generation. Normalized
per output, [Luccioni et al.,[2024] report average costs of ~0.002 Wh for text classification, 0.047 Wh
for text generation, and 2.9 Wh for image generation. By comparison, generating a single short video
with WAN2.1-T2V-1.3B consumes nearly ~90 Wh. This places video diffusion roughly 30x more
costly than image generation, 2,000 than text generation, and 45,000 x than text classification. At
scale, the quadratic growth in (H, W, T') implies rapidly increasing hardware and environmental costs,
highlighting the need for hardware-aware optimizations and sustainable model design. Theoretical
thresholds derived in Appendix [B|suggest that compute-bound behavior extends to other accelerators,
reinforcing the generality of our scaling model.



7 Limitations and Conclusion

Limitations. Our analysis provides a detailed characterization of WAN2.1-1.3B using the open-
source Hugging Face codebase. As such, it does not capture potential improvements from internal
optimizations such as diffusion caching, quantization, or kernel fusion. The theoretical model assumes
a fixed empirical efficiency i and does not account for runtime overheads (e.g., kernel launch latency,
padding) or memory hierarchy effects, which may cause deviations for small inputs or extreme aspect
ratios.

Energy measurements were conducted on a single hardware platform (NVIDIA H100 SXM). While
Appendix [B| shows that the compute-bound regime and associated scaling trends should extend
to other accelerators for realistic token lengths, this remains to be confirmed experimenta. We
deliberately excluded perceptual quality from our scope, leaving open the question of energy—fidelity
tradeoffs. Finally, many production T2V systems (e.g., Veo) also generate audio, whose contribution
to energy cost remains unexplored.

Conclusion. We presented a systematic study of latency and energy consumption in text-to-video
generation. Through fine-grained experiments on WAN2.1, we validated a simple analytical model
that predicts quadratic scaling with spatial and temporal dimensions, and linear scaling with denoising
steps. Cross-model benchmarks confirmed that this compute-bound regime extends broadly across
recent open-source systems, with orders-of-magnitude disparities in cost depending on model size,
sampling strategy, and video length.

These findings highlight both the structural inefficiency of current video diffusion pipelines and
the urgent need for efficiency-oriented design. Promising avenues include diffusion caching, low-
precision inference, step pruning, and improved attention mechanisms. We hope this work serves
as both a benchmark reference and a modeling framework to guide future research on sustainable
generative video systems.
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A Detailed FLOP Derivations and Scaling Laws

Conventions.

We follow the HPC convention where one multiply—add equals two FLOPs. Matrix

multiplications of shape (a x b) - (b x ¢) therefore cost 2abc FLOPs. Bias additions, activations, layer
norms, and softmax are lower order and omitted unless stated. All results below apply per forward

pass.

Table 5: Complete set of WAN2.1-T2V-1.3B hyperparameters and constants. This table provides the
full notation, including VAE layer-wise symbols (instantiated explicitly in Appendix [A8).

Symbol Value Meaning
Global video parameters
T variable Number of frames
HxW variable Input spatial resolution
S variable Number of denoising steps
g 2 CFG passes per step (cond + uncond)
Vg, Vs 4,8 Temporal and spatial downsampling factors of the VAE
DPhs Pw 2,2 Spatial patch size in the DiT latent grid
Diffusion Transformer (DiT)
N 32 Number of DiT layers
d 2048 Hidden size
f 4 MLP expansion factor (8192 = 4d)
L (1+LH)E% Token length of latent grid
Text encoder (T5-XXL)
m 512 Output tokens per video (conditioning length)
Drext 2 Calls per video (cond + uncond)
diext 4096 Hidden size
Liext 24 Encoder layers
Srext 2.5 MLP expansion factor
Timestep embedding
d, 256 Hidden width of timestep MLP
VAE (layer-wise; values in App.
j 1, ..., Necconv Layer index along the VAE decoder path
Naec.conv Number of 3D conv layers in the VAE decoder
k,gj ), k,(lj ), kl(uj ) - 3D kernel sizes of decoder layer j
C’i(nj), Céﬂt) - In/out channels at decoder layer j

7O gO) W)

Output grid sizes at decoder layer j

C. 384 Channel width at middle attention block
T.,H,, W, [T/4],H/8, W/8  Grid sizes at middle resolution
L, W, Spatial token length per frame (2D middle attention)
Hardware / efficiency constants
I 0.456 Empirical efficiency (fraction of Opcax)
O peak 989x10'® FLOP/s Peak GPU throughput (H100)
 nax 700 W Sustained GPU power
Diotal Flowal / (Mgpeak) Total latenCy

A.1 Latent Tokenization and Shapes

Let the video have T frames and spatial size H x W in pixels. The VAE downsamples temporally by
a factor v; and spatially by v, and the DiT operates on spatial patches of size p;, X p,, in the latent
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grid. The token length ¢ seen by the DiT is
TN H
(= (145 v (1)
Ut/ VUsPh UsPw

In WAN2.1 we use (vt, Vs, Ph, Pw) = (4,8, 2,2), hence the shorthand ¢ = (1 + %)%% used in the
main text.

A.2 Self-Attention in the DiT

Let d be the model width and h the number of heads (with dj, = d/h). For a sequence of length ¢:
Q.K,V projections: 3x20d% = 64d®

Attention logits (QK ') : 20%d
Weighted sum (AV) : 20%d
Output projection: 20d> . 2)
Summing on all N DiT layers yields
Fur = N x (80d* + 40%d). 3)

(The head count A cancels out, since h - dj, = d.)

A.3 Cross-Attention (Video — Text)

Let m be the number of text tokens and d the shared width. Assuming no KV cache (K,V recomputed
each denoising step as it is done in the current official implementation) and one cross-attention block
per DiT layer:

Query from video: 20d>
Keys/values from text: 4md?* (KandV)
Attention products: 24md + 2¢md = 40md
Output projection: ~ 2/4d*. 4)
Hence over the N layers
Fioss = N x (44d* + 4md® + 44md). ®)

With KV caching, the 4md? term becomes once-per-video while the 4¢md products remain per step.
With windowed or factorized attention, ¢ or m may be replaced by the effective window size.

A.4 Transformer MLP

With expansion factor f and sequence length ¢, a two-layer MLP d — fd — d costs over all DiT
layers
Fup = N x 4f td*. (6)

A.5 Stacking Across S Steps, and CFG

Let g denote the number of conditional forward passes (CGF) per denoising step (¢ = 2 under
classifier-free guidance). Combining (3)—(6), the DiT cost is

FDiT(TaH7W;SaN>d7f>mag) = gS X (Fself+Fcross+lep>a (7)
with £ given by (T).

A.6 Text Encoder

For a Lx-layer encoder (e.g., TS/CLIP-like) with width dex, expansion fiex, and m tokens:
Self-attn per layer: 8 mclfext + 4m2diext

FFEN per layer: 4 fiex md?exl . ®)
For piex; forward passes per video (e.g., peext = 2 for conditional and unconditional prompts),
Fiext = Drext Liext (8 md?ext +4 m? rext + 4 frext mdtzext). 9

This term is once-per-video, independent of .S.
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A.7 Timestep Embedding MLP

Mapping a scalar diffusion step to a d-dim vector and injecting it into each block via a small MLP
with hidden width d:
F, = ¢gS(2d.d + 14d%). (10)

A.8 VAE: Convolutions and Middle Attention

We account for the VAE cost as the sum of (i) all convolutional layers along the decoder and (ii) a 2D
self-attention “middle” block evaluated independently per time slice.

Convolutional layers. For a 3D convolution with kernel (kt(J ), k,(f ), kY )), channels Ci(rf) — Cc()fl)t
and output size TU) x HU) x W) the cost is

Fc(gRVSd _ th(j)kgj)kg) Ci(g)cc()ﬂ)t TG O W6 (11)
wonvaas With concrete per-layer shapes
provided in Table[6} WAN-2.1 VAE include a 2D self-attention middle block evaluated independently

on each time slice (L, = H,W,, channel width C.,):
Fupgmigan = To(8CIL. + 4LIC.). (12)

Summing over the decoder path gives Fyag cony = Z;\fzdl’ F(j )

Middle self-attention (2D, per time slice). Let C, be the channel width at the middle resolution,
and T, H,, W, the temporal/spatial sizes (thus L, = H,W, tokens per time slice). Using the
derivation in Appendix[A.2] the middle attention cost is

FVAE,mid-atm = T* (8 CEL* + 4LEC*), (13)

where the final 2C2L,, term arises from the output projection and is included in the 8C?L,, term
above.

WANZ2.1 decoder instantiation (values). In WAN?2.1, the VAE decoder starts from a latent grid
(To, Ho, Wo) = ([T/4], H/8, W/8) with z=16 channels. A causal 3x3x3 convolution expands
this to 384 channels, followed by a “middle” block consisting of two residual 3x3x3 convolutions
and a 2D self-attention layer applied independently per time slice. The decoder then progressively
upsamples: two temporal+spatial upsamplings (doubling 7', H, W and halving channels), followed
by one purely spatial upsampling (doubling H, W and halving channels). Residual blocks (three per
stage) refine features at each resolution, and a final 33X 3 convolution produces the RGB output at
(T,H,W).

Table [ summarizes the dominant operators for FLOP accounting. Applying Eq. (TT)) across these
layers yields FyAEg cony, While Eq. gives the middle-attention cost.

A.9 Total FLOPs and Leading-Order Scaling

We finally obtain
-Ftotal(Hv VV; T; S) = -Ftext + FVAE,conV + FVAE,mid»altn + F'r + FDiT 5 (14)

with components given by @), (TT), (I3), (I0), and (7). Since ¢ grows linearly with H, W, and T
(Eq. , the /2d and ¢/md terms in Fp;t dominate for typical settings (¢ > m), yielding quadratic
growth in H, W, and T', and linear growth in .S.

Scope and caveats. (i) FlashAttention and fused kernels reduce memory traffic and constants but
do not change FLOP counts. (ii) KV caching changes only the cross-attention 4md? term from
per-step to once-per-video. (iii) Windowed or factorized attention replaces ¢ (or m) by an effective
window size, altering quadratic scaling. (iv) If activations or norms become bandwidth-bound, the
proportionality between FLOPs and latency weakens; our WAN2.1 measurements on H100 indicated
compute-bound behavior over the operating points considered.
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Table 6: VAE decoder: representative dominant operators for FLOP accounting (layer j). It mirrors

the encoder; z=16, C,,.=384, middle resolution ([7/4], H/8,W/8).

Stage j Op type Kernel (ki, kp,, kw) Ci(rll) — Cc()f_l)t ™™ gL WO
DO conv3d (3,3,3) z— 384 [T/4] H/8 W/8
Middle (RBs) conv3d 3,3,3) 384 >384  [T/4] H/S W/8
Middle (attn 2D) attn-2D - 384 384  [T/4] H/S W/8
DI (RBs) conv3d (3,3,3) 384 384  [T/4] H/S W/8
Up (time) conv3d (time) (3,1,1) 384 —2x384 [T/2] H/8 W/8
Up (space) conv2d (space) (1,3,3) 384 — 192 [T/2] H/4 W/4
D2 (RBs) conv3d (3,3,3) 192384  [T/2] H/4 W/4
Up (time) conv3d (time) (3,1,1) 384 — 2x 384 T H/4 W/4
Up (space) conv2d (space) (1,3,3) 384 — 192 T H/2 W/2
D3 (RBs) conv3d (3,3,3) 192 — 192 T H/2 W2
Up (space) conv2d (space) (1,3,3) 192 — 96 T H w
Head conv3d (3,3,3) 96 — 3 T H 1%

B Theoretical Compute-Bound Thresholds for DiT Blocks

We estimate the arithmetic intensity (FLOP per byte transferred between HBM and registers) for the
main operations in DiT: the self-attention block (with FlashAttention) and the MLP. We then derive
the compute-bound threshold ¢* at which the operation’s intensity matches the hardware balance
ﬁ = Gpeak/ B.

Let s be the byte size of a scalar (e.g., s = 2 for BF16), and assume a fully optimized implementation
that reads inputs and writes outputs only once from HBM, so each tensor contributes twice to memory
traffic (read + write).

FlashAttention (forward). We include only the matrix multiplications QK ' and PV (not projec-
tions). The total FLOPs scale as Fyy, = 4¢2d, and total memory transfer as Dy, = 2¢ds (read inputs
@, K,V and write output of size ¢d).

Fuwm  402d 20
tn _22% L sB

Datm B 20ds - S atm = 7

AIatm (6) =

MLP block (GEMM) The total FLOPs are Fip, = ftd?, and the memory transfer is D =
(fd? + €d + ftd)s.

B lep B fed .
Mup) =5 = Gav e+ s = =

For d = 2048, s = 2, and 8 = 295 (H100 BF16), we find:

o :2’295:295, * = 2.205 = 590,

attn 2 mlp

Thus, all MLP are compute-bound for ¢ > 590, and attention becomes compute-bound for ¢ > 290.
In our WAN2.1 runs, £ >> 10*, so both blocks operate far in the compute-bound regime.

Caveat. These thresholds assume peak theoretical performance. In practice, we observe an em-
pirical efficiency p ~ 0.4 for compute throughput on the H100. Similarly, the effective memory
throughput often remains well below B due to irregular access patterns and latency bottlenecks.

Other hardware. Table[/|reports 3 and the corresponding compute-bound thresholds for both
attention and MLP blocks across a range of accelerators.
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Table 7: Approximate FLOP-to-bandwidth ratios (5 = ©peu/B) and corresponding compute-bound

thresholds ¢* for DiT blocks (BF16).

Accelerator Opeak B Jé] Can / Cip
(TFLOP/s) (TB/s) (FLOP/byte)
NVIDIA H100 SXM 989 3.35 295 295/590
NVIDIA A100 SXM 312 2.0 156 156 /312
RTX 4090 330 1.0 330 330/ 660
NVIDIA L4 121 0.3 605 605 /1210
TPU v6 918 1.6 574 57471148
AMD M3250X 2500 6.0 417 417/ 834
Intel Gaudi3 1678 3.7 453 453 /906

All realistic settings in WAN2.1 yield ¢ > 10%, even for low-resolution and short-duration inputs.
Thus, both MLP and attention blocks operate well beyond the compute-bound threshold on all tested

accelerators.
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