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Abstract

Detection models such as YOLO and Grounding DINO can be used to detect local
properties such as objects ("car") in individual frames of videos. The likelihood
of these detections is indicated by confidence scores in [0, 1]. How can these
confidence scores be lifted to temporal properties over sequences (e.g., "a car is
detected at all times in the video"or "a traffic light is eventually detected")? In
this work, we study this problem of assigning Confidence Scores for TempOral
Properties (CSTOPs) over sequences, given confidence score predictors for local
properties. These scores can be useful for several downstream applications such as
query matching, ranking and fine-tuning. We argue that Temporal Logic provides a
natural language for expressing diverse temporal properties of interest. We then
propose a scoring function called LogCSTOP for defining CSTOPs that can be
computed in polynomial time with respect to the lengths of the sequence and
temporal property, while existing methods require exponential space and time. We
introduce the CSTOP-RealTLV-video benchmark with video sequences from the
RealTLV dataset and ground-truth labels for temporal properties from 15 diverse
templates. Finally, we show that LogCSTOP outperforms Large Vision Language
Models, such as LongVA-7B, and an existing neurosymbolic baseline on query
matching over videos by more than 16% in terms of balanced accuracy .

1 Introduction

Consider an autonomous vehicle driving in the city, providing real-time perception data as videos
to a surveillance system. This system might then be interested in automatically identifying whether
the scene satisfies certain properties. Examples of critical temporal properties include "the vehicle
always remains in a given lane" or "no pedestrian is detected on the crossing until the traffic light
turns red". While neural detection models such as YOLO [20] can detect local properties such
as objects ("car") in individual video frames, these detections are accompanied by the models’
uncertainty about the predictions in the form of confidence scores. Hence, YOLO would detect how
likely a car is in a frame with a confidence score between 0 and 1. How can these confidence scores
then be lifted to the temporal properties discussed above? In other words,

Given a temporal property and (potentially noisy) confidence score predictors for local properties,
what is the confidence score for a data sequence expressing the temporal property?

These Confidence Scores over TempOral Properties (CSTOPs) can be useful for several downstream
applications on unstructured data sequences. As in the examples discussed above, a query matching
system could check if these scores are over a given threshold to decide if a video expresses the

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



Figure 1: LogCSTOPs for three videos from the NuScenes dataset w.r.t the query "Is there a person
in all frames of this video?". Video 2 with occluded persons is assigned a lower score than video 1
(where a person is visible in all frames), and higher score than video 3 (where there are frames with
no persons). These scores can be used for ranking and query matching with the adaptive threshold.
YOLOv8x is used here to detect objects in individual frames of the videos.

temporal property. Furthermore, a search / ranking system could compare / rank multiple videos
against a temporal query using these scores to provide the top-k most relevant results.

This problem of score assignment was introduced by [23] for detecting temporal events in videos,
where the events were represented as properties in Linear Temporal Logic (LTL) [19]. LTL, with
temporal operators such as "Always" (□) and "Until" (U), can be used to represent several useful
temporal properties of interest. For example, the property "vehicle always remains in lane" can
be written as □car_in_lane where the local property car_in_lane can be detected using a neural
model (e.g., CLIP). Given a video with T frames and local properties C, [23] first constructs a
probabilistic automaton on all possible conjunctions of local properties, C, and all frames, resulting
in a state space with T ∗ 2|C| states. A probabilistic model checker, STORM [11], is then used to
assign a probability to the automaton satisfying an LTL property. Irrespective of the LTL property φ,
this requires O(2|C| ∗ T ) space and time. A video matches a query if the score is greater than 0.5.

In this work, we propose a novel scoring function, called LogCSTOP, that can assign a confidence
score to a data sequence satisfying a temporal property in LTL. LogCSTOP is inspired by quantitative
semantics for LTL [9] and can assign a score for a video of length T satisfying property φ in O(|φ|∗T )
time and space. LogCSTOP hence offers a significant improvement in space and time complexity
over [23], since it does not need to construct an expensive probablistic automaton. Furthermore,
LogCSTOP inherently handles noisy predictions via local smoothing. We also argue that the constant
0.5 threshold for query matching used by [23] is not optimal for long sequences and propose an
adaptive threshold that depends on the length of the sequence and temporal property. Figure 1
demonstrates how these scores can be used for ranking and query matching.

In order to empirically demonstrate the usefulness of LogCSTOP, we evaluate it on the downstream
application of query matching over videos. Since the implementation of [23] is not publicly available,
we compare LogCSTOP with NSVS-TL [6]. NSVS-TL [6] also constructs the same automaton
as [23] and uses an off-the-shelf model checker for detecting events of interest in videos. However,
unlike [23], NSVS-TL uses Probabilistic Computational Tree Logic (PCTL) and only evaluates
whether a video matches a query, limiting its use to query matching. Owing to their success
on several video-text tasks, we also include Large Vision Language Models (LVLMs), such as
Video-LLava-7B [14] and LongVA-7B [24] as baselines.

To compare these methods, we introduce the CSTOP-RealTLV-video benchmark that compiles video
sequences from the Real TLV [6] dataset and provides ground-truth labels for temporal properties
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from 15 diverse templates over objects in videos. We find that LogCSTOP with object detection
scores from YOLOv8 outperfoms LVLMs and NSVS-TL by > 16% in terms of balanced accuracy
on CSTOP-RealTLV-video. We also evaluate how changes to different components of LogCSTOP
affect the performance on query matching and find that local smoothing, and adaptive thresholding
improve query matching results.

To summarize, our contributions are as follows:

• We study the problem of assigning scores to temporal properties over sequences, given
noisy predictors for local properties C. We propose LogCSTOP, a scoring function inspired
by quantitative semantics for Temporal Logic, that can assign a score to a video of length
T satisfying a temporal property φ in O(|φ| ∗ T ) space and time. This is a significant
improvement over existing work that requires O(2|C| ∗ T ) space and time.

• We introduce the CSTOP-RealTLV-video benchmark that compiles video sequences from
the Real TLV dataset , with temporal properties from 15 diverse templates over objects and
emotions respectively.

• We evaluate LogCSTOP with simple trained predictors on a downstream task, namely
query matching on the CSTOP-RealTLV-video benchmark. We find that LogCSTOP with
YOLOv8 outperforms LVLMs and a PCTL-based state-of-the-art method for event detection,
NSVS-TL, on videos by more than 16% in terms of balanced accuracy.

2 Representing Temporal Properties over Sequences of Predictions

Let X = [x0, x1, . . . , xT ] denote a sequence of data items of length T , where xt denotes the data
item at timestep 0 ≤ t ≤ T . Further, let C denote a finite set of local properties of interest. We
assume that there exists a true labeling function y : C × T 7→ {0, 1} such that y(c, t) = 1 if the
property c ∈ C is expressed by xt, and y(c, t) = 0 otherwise. In the example of autonomous driving
scenarios, X could correspond to a video with each xt corresponding to the frame at timestep t and
C could be objects of interest such as "car" and "pedestrian". In this case, y(c, t) = 1 would indicate
that object c is present in frame xt.

In this work, we are interested in temporal compositions of these local properties. For example, given
the true labels for the object "car" in individual frames, what is the label for a car being present in
all frames or alternatively any frame? Additionally, given the true label for "pedestrian", what is the
label for a car being present in all frames until a pedestrian is detected?

We find that Linear Temporal Logic (LTL), introduced and widely used for formal specification and
verification of reactive systems [19], provides a suitable language for expressing such temporal
properties. Formally, a temporal property φ over local properties C can be expressed in LTL as
follows:

φ := ⊤ | ⊥ | c | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | ⃝φ | □φ | φ1 U φ2

where, c ∈ C is a local property and φ1, φ2 are temporal properties. ¬,∧,∨ are the logical not,
and, and or operators respectively. ⃝, □ and U are temporal operators Next, Always, and Until
respectively. Other temporal operators such as "Eventually φ" (3φ) can then be derived as ¬□¬φ.

This language can now be used to represent properties from the previous examples. For instance, the
temporal properties for a car being present in all frames and any frame in a video can be represented
as φ = □ car and φ = 3 car respectively. Furthermore, the property that a car is present in all
frames until a pedestrian is present can be represented as φ = car U pedestrian.

The ground truth labeling function y(c, t) for local properties can be lifted to y(φ, t), meaning that
the sequence X expresses temporal property φ starting at timestep t, using the standard semantics for
LTL over finite sequences [7] as follows: for 0 ≤ t ≤ T ,

• y(⊤, t) = 1 and y(⊥, t) = 0

• y(c, t) = 1 iff c is expressed by xt

• y(¬φ, t) = 1 iff y(φ, t) = 0

• y(φ1 ∧ φ2, t) = 1 iff y(φ1, t) = 1 and y(φ2, t) = 1

• y(φ1 ∨ φ2, t) = 1 iff y(φ1, t) = 1 or y(φ2, t) = 1
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• y(⃝φ, t) = 1 iff t < T and y(φ, t+ 1) = 1

• y(□φ, t) = 1 iff y(φ, t′) = 1 for all t ≤ t′ ≤ T

• y(φ1 U φ2, t) = 1 iff there exists a t ≤ t′ ≤ T such that y(φ2, t
′) = 1 and y(φ1, t

′′) = 1
for all t ≤ t′′ < t′

Given the true labeling functions for local properties y(c, ·), the standard semantics can perfectly
determine if a sequence X expresses a temporal property φ (if and only if y(φ, 0) = 1). In practice,
however, we do not have access to these true labeling functions. We assume that noisy predictors
can be used instead to provide confidence scores ŷ : C × T 7→ [a, b] for the label being 1 . The
estimate for true label y(c, t) can then be computed as ỹ(c, t) = ŷ(c, t) > τ for some threshold τ .
Most neural models, including object detection models such as YOLO, provide confidence scores for
predictions in the range [0, 1]. The object c with score ŷ(c, t) is said to be detected, i.e., ỹ(c, t) = 1 if
ŷ(c, t) > τ , where τ usually is 0.5. Note that it is easy to normalize scores in any range [a, b]: for
example, scores in the [0, 1] range can be shifted to the [−∞, 0] range by using the log operator (and
vice versa, using the e operator), the threshold τ will also have to be scaled accordingly. The accuracy
of these predictors then just measures how well ỹ(c, ·) estimates y(c, ·).
We formally present the problem of assigning Confidence Scores for TempOral Properties (CSTOP)
as follows: Given confidence score predictors for local properties {ŷ(c, t) : c ∈ C, 0 ≤ t ≤ T} and a
temporal property φ defined over the local properties in C, how can the confidence score for φ at the
time step 0 ≤ t′ ≤ T , denoted ŷ(φ, t′), be assigned?

3 LogCSTOP: An Algorithm for Computing CSTOP

While the standard semantics of LTL assigns a Boolean truth value to each temporal property,
quantitative extensions have been proposed to assign numerical values to temporal properties that
are intended to capture how well a sequence satisfies the property [8]. Informed by this literature
on quantitative semantics, we propose a scoring function LogCSTOP ŷ : φ× T ×W 7→ [−∞, 0] in
Algorithm 1 that recursively computes a confidence score for temporal property φ in time polynomial
in T and length of the temporal property |φ|. ŷ(φ, ·) assumes that the scores for local properties are
also given in range [−∞, 0], i.e., ŷ(c, ·) ∈ [−∞, 0]. Whenever needed, we normalize the confidence
scores for local properties ŷ(c, ·) to be in the [0, 1] range using eŷ(c,·). 1 ≤ w ≤ T denotes a window
used for downsampling and smoothing predictions and we discuss this later.

Algorithm 1 LogCSTOP ŷ(φ, t, w)

Require: Temporal property φ, current timestep t, dowsampling-smoothing window 1 ≤ w ≤ T
Ensure: ŷ(φ, t, w)

1: function S(φ, t, w)
2: if t > T then return −∞
3: else if φ = ⊤ then
4: return 0
5: else if φ = ⊥ then
6: return −∞
7: else if φ = c then
8: return log(averaget′∈[t,t+w)e

ŷ(c,t′))) ▷ Smooth scores in window [t, t+ w]

9: else if φ = ¬φ′ then
10: return log(1− eŷ(φ,t,w))
11: else if φ = φ1 ∧ φ2 then
12: return ŷ(φ1, t, w) + ŷ(φ2, t, w)
13: else if φ = φ1 ∨ φ2 then
14: return ŷ(¬(¬φ1 ∧ ¬φ2), t, w)
15: else if φ = ⃝φ′ then
16: return ŷ(φ′, t+ w,w) ▷ Shift the current timestep from t to t+ w
17: else if φ = □φ′ then
18: return ŷ(φ′ ∧⃝□φ′, t, w)
19: else if φ = φ1 U φ2 then
20: return ŷ(φ2 ∨ (φ1 ∧ ¬φ2 ∧⃝ (φ1 U φ2)), t, w)
21: end if
22: end function
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Downsampling and average smoothing of confidence scores of local properties. Firstly, LogC-
STOP downsamples the sequence of length T to contiguous blocks of length w. The confidence scores
for any local property in each block starting at t, ŷ(c, t′ ∈ [t, t+ w]) are first averaged after being
normalized to the [0, 1] range. The confidence score for each block is then the log of this averaged
[0, 1]-normalized score. This series of downsampling, normalizing and smoothing operations starting
at timestep t for a window w can be seen on line 8. For example, given a sequence of log scores for
object "car",

ŷ(car, t ∈ [0, 5]) = [log(0.9), log(0.1), log(0.9), log(0.9), log(0.9), log(0.9)]

and w = 3, the LogCSTOP first downsamples to 2 blocks,

[[log(0.9), log(0.1), log(0.9)], [log(0.9), log(0.9), log(0.9)]]

before averaging by block,

[log((0.9 + 0.1 + 0.9)/3), log((0.9 + 0.9 + 0.9)/3)] = [log(0.63), log(0.9)]

In this example, note that the score log(0.1) is likely incorrect since the car cannot momentarily
disappear. Downsampling and then smoothing reduce the impact of this incorrect local prediction
hence essentially capturing the property that confidence scores cannot drastically change in a local
window. Note that this is done online for each successive block and the shifting for temporal operators
is handled by the Next operator (line 16).

Handling of logical operators (¬,∧,∨). The LogCSTOP for ¬φ at timestep t is intuitively high
when the score for φ is low (line 10). For example, given a high score ŷ(car, t, w) = log(0.9), the
score for "not car" ŷ(¬car, t, w) = log(1− 0.9) = log(0.1) is low.

The LogCSTOP for φ1 ∧ φ2 at timestep t is high only when the scores for both φ1 and φ2 are high
(line 12). For example, given high scores ŷ(car, t, w) = log(0.9) and ŷ(pedestrian, t, w) = 0.9,
the score for "car and pedestrian" ŷ(car ∧ pedestrian, t, w) = log(0.9) + log(0.9) = log(0.81).
However, if either of the scores are low, e.g., if ŷ(pedestrian, t, w) = 0.1, the score drops signifi-
cantly to ŷ(car ∧ pedestrian, t, w) = log(0.9) + log(0.1) = log(0.09). Inspired by DeMorgan’s
law, the LogCSTOP for φ1 ∨ φ2 is simply the score for equivalent property ¬(¬φ1 ∧ ¬φ2) (line 14).
This is intuitively only low when both the scores are low.

Note that these operators are defined not only over local properties c as in the examples above,
but over any temporal property φ,φ1, φ2. Hence, for temporal property φ = "(car or truck) and
(not pedestrian)", the score is high only if it is high for both φ1 = "(car or truck)" and φ2 = "(not
pedestrian)". The scores for φ1, φ2 can be recursively computed.

Handling of temporal operators (⃝,□,U). As discussed above, the property Next φ (⃝φ)
evaluates whether φ is expressed starting at the next block t + w (line 16). When w = 1, this
represents the standard Next operator. The property Always φ (□φ) is interpreted here as a "temporal
and" operator over the sequence (line 18). Hence, □φ can be equivalently written as φ ∧⃝□φ:
the property φ is expressed by xt and always after by [xt+w, . . .] (⃝□φ). Similar to the logical ∧
operator, the score is high only if it is high for all timesteps of the sequence. The computation in log
space is beneficial to prevent any underflow here with fixed precision.

The property φ1 Until φ2 (φ = φ1 U φ2) can be equivalently written as φ = φ2 ∨ (¬φ2 ∧ φ1 ∧
⃝ (φ1 U φ2)) (line 20). This informally translates to evaluating whether either (1) φ2 is expressed
by xt, or (2) φ1 is expressed instead and φ = φ1 U φ2 is expressed by [xt+w, . . .].

An adaptive threshold for LogCSTOP. As discussed in Section 2, the usefulness of a local
property predictor ŷ(c, ·) can be determined by how accurately it predicts the true label y(c, ·) as
ỹ(c, ·) = ŷ(c, ·) > τ for some threshold τ . Similarly, the usefulness of a scoring function for temporal
property φ is determined by how accurately it predicts y(φ, ·) (from the standard LTL semantics) as
ỹ(φ, ·) = ŷ(φ, ·) > τ for some τ .

A natural first choice for such a threshold for LogCSTOP is the constant τ = log 0.5. This, however,
does not scale with the length of the sequence. For instance, with w = 1, given a sequence of log
scores for "car",

ŷ(car, t ∈ [0, 5]) = [log(0.9), log(0.9), log(0.9), log(0.9), log(0.9), log(0.9)]

the LogCSTOP for temporal property "Always car" is

ŷ(□car, t = 0, w = 1) = log(0.96) > log(0.5).
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However, when another data item with the same high score log(0.9) is added, the score drops to

ŷ(□car, t = 0, w = 1) = log(0.97) < log(0.5).

We would ideally like both these sequences to match the query □ car but only the first one does with
the log 0.5 threshold. We hence define a length and query-adaptive threshold τ : φ× T 7→ [−∞, 0]
for LogCSTOP as follows: Let y0.5(c, t) = 0.5 for all c, t and ŷ0.5(φ, t, w) be the assigned LogC-
STOP. Then τ(φ, t) = min{log(0.5), ŷ0.5(φ, t, w)}. The estimate of y(φ, t) is then ỹ(φ, t, w) =
ŷ(φ, t, w) > τ(φ, t). In other words, a data sequence expresses a temporal property if the LogCSTOP
is higher than both random chance log(0.5) and the score assigned using random chance predictors
for local properties.

Complexity analysis for LogCSTOP. The computational complexity of Algorithm 1, for a temporal
property φ with length |φ| and a sequence of predictions of length / time horizon T , is O(|φ| ∗ T ).
This assumes O(|φ| ∗ T ) space for caching scores for each sub-formula over the sequence. The
computational complexity follows from the observation that a formula / temporal property can be
written as a parse tree with nodes corresponding to sub-formulae and leaves corresponding to local
properties. This tree can then be processed from leaves to root, at each step caching the sequence
scores for the sub-formula corresponding to the node being processed. The score for any sub-formula
rooted at a node can be computed in O(T ), given the sequences of scores for its children. Since
the tree has |φ| nodes in total, this leads to a computational complexity of O(|φ| ∗ T ) for the root
formula.

3.1 Comparison with other Quantitative Semantics for Temporal Logic.

Quantitative semantics for Signal Temporal Logic [8] define a robustness measure, i.e., a measure
of how well a signal satisfies or violates a given formula. If the sequences of confidence score
predictions over local properties are viewed as signals, these semantics offer an alternate solution to
the CSTOP problem where the robustness represents the confidence score for a temporal property.

We argue that LogCSTOP offers advantages over such semantics in the context of the CSTOP problem.
This is primarily because the traditional robustness measure is defined using max and min functions
over temporal and logical formulae. The measure, hence, only reflects the most violating or most
satisfying timestep in the sequence. For example, consider assigning confidence scores to the property
"Always car" in two different scenarios:

ŷ1(car, t ∈ [0, 2]) = [log(0.9), log(0.9), log(0.1)]

ŷ2(car, t ∈ [0, 2]) = [log(0.1), log(0.1), log(0.1)]

Ideally, the confidence score for "Always car" should follow the order: ŷ1(□car, ·) > ŷ2(□car, ·).
The standard STL semantics, however, would assign the same robustness to both sequences for any
τ > 0.1 since the most violating score is log(0.1) in either case. This makes the robustness measure
unsuitable for downstream applications that require such ordering: for example, ranking / search.
Moreover, the use of the min and max operators result in non context robustness measures, making
it a poor choice for applications such as fine-tuning local predictors using these scores for feedback.
We provide more details about the standard robustness measure and how it is computed for different
temporal properties in Appendix A, with more examples demonstrating differences with LogCSTOP.

4 Experimental Evaluation

We evaluate LogCSTOP on the downstream application of query matching with temporal properties
(TP-query matching) over videos and speech and compare it with other methods for that task.
Concretely, the TP-query matching task on video involves predicting whether a given temporal query
matches, or is expressed by, a video. For instance, the query "always car" matches any video where
the car is present in all frames.

Temporal properties as queries. We use the following criteria for selecting temporal properties (of
increasing difficulty) as queries for evaluation: (1) number of local properties: 1-3, (2) number of
nested operators in the temporal property: 1-3, and (3) number of temporal operators (1-2). Given
these criteria, we choose 15 temporal property templates from 5 broad categories, in the order of
increasing difficulty of operator selection and nesting:
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1. Simple temporal operators: Eventually p1, Always p1, p1 Until p2.
2. Boolean over temporal operators: Always p1 and Eventually p2, Always p1 or Eventually p2.
3. Temporal over boolean operators: (Not p1) Until p2, p1 Until (Not p2), Always (p1 and p2),

(p1 and p2) Until p3.
4. Temporal over temporal operators: p1 Until Always p2, Eventually Always p1, Always

Eventually p1.
5. Temporal operators over boolean and temporal operators: (Not p1) Until Eventually p2, (Not

p1) Until Always p2, (p1 and p2) Until Eventually p3.

4.1 The CSTOP-RealTLV-video Benchmark for TP-query matching over videos.

There are no existing benchmarks that evaluates TP-query matching on video sequences with the
breadth of properties discussed above. We introduce the CSTOP-RealTLV-video benchmark that
provides ground-truth labels for different temporal properties over video sequences collected from
the Real TLV dataset [6] . The Real TLV dataset consists of a subset of videos from NuScenes [3]
and Waymo [21] driving datasets with frame-level annotations for various objects / entities present
in each scene (for example, "car", "truck", etc). The dataset can be used for query matching with
temporal properties over objects in videos ("car until pedestrian", for example) . Note that the Real
TLV dataset provides ground-truth labels for two temporal property templates: "p1 Until p2" and
"(p1 and p2) Until p3" that are also included in our list of 15 templates discussed above.

For any temporal property template (for example, "p1 Until p2") and samples from this dataset, we
identify matching and non-matching sequences of desired length as follows: for every sample, we
first identify candidates for local properties in the template (p1, p2, etc.) as the set of all ground-truth
objects in the sequence. We then use the standard LTL semantics over the frame-level ground-truth
labels to collect matching and non-matching subsequences of the desired length. This creates a
TP-query matching dataset for an arbitrary set of temporal properties as long as these properties are
sufficiently expressed by sequences from the underlying dataset. Moreover, this pipeline is agnostic
to the choice of the dataset since it only requires sequences of ground-truth labels for local properties.
We use this pipeline to create the CSTOP-RealTLV-video dataset. This dataset consists of 7468
samples, 3750 matching and 3718 non-matching, with video sequences of lengths {10, 20, 30, 40, 50}.
For each target length, this dataset contains approximately 100 samples corresponding to each of the
15 property templates.

4.2 Methods.

We use TP-query matching as an application and compare LogCSTOP against methods for this task.
Briefly, these methods include:

LogCSTOP with simple trained neural predictors: We use YOLOv8 [12], Grounding DINO [15],
and OWLv2 [18], to get confidence scores for object detection in video frames . Since the scores
are in the [0, 1] range, we normalize them in the [−∞, 0] range using the log operation, as required
by LogCSTOP. A video matches query φ if LogCSTOP ŷ(φ, 0, w) > τ(φ, 0) (and vice versa for
non-matching examples). The estimates are evaluated against ground-truth labels y(φ, 0). The
window w is selected as follows: w = 2 for T < 20 and w = 5 otherwise.

Large Vision Language Models (LVLMs). We evaluate two popular LVLMs on query matching
for videos: Video-LLava-7B [14] and LongVA-7B [24]. For the "always car" example, we provide
the models with the video sequence and a text prompt "Is a car detected in all frames of this video?".
The response is considered correct if the model responds with "Yes" or "No" for matching and
non-matching samples respectively. Video-LLava-7B supports a context window of 4096 tokens
while LongVA-7B can handle up to 2000 frames. We set the maximum tokens to generate to 60 and
1024 respectively and use a temperature of 0.1 and standard values for the other parameters.

NSVS-TL [6]. Proposed for event detection in videos, NSVS-TL [6] uses the PCTL-based model
checker STORM [11] to identify video frame subsequences where a certain event is detected. NSVS-
TL reports state-of-the-art performance on detecting temporal events in videos, surpassing large
language models such as GPT-4. For our task, we specify the target query in PCTL ("always car" is
P > 0.5[G "car" ]) and the response is considered correct if NSVS-TL returns / does not return the
entire video sequence as output for a matching / non-matching query respectively.
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Table 1: LogCSTOP reports the best overall balanced accuracy on the CSTOP-RealTLV-video dataset,
outperforming LVLMs and NSVS-TL. Moreover, it reports the best performance on all queries. The
dataset contains 3750 matching and 3718 non-matching sequences of lengths {10, 20, 30, 40, 50}.
The best performing method is highlighted in bold and the second best is underlined.

Query NSVS-TL Video-LLaVA-7B LongVA-7B LogCSTOP
OWLv2 GroundingDINO YOLOv8

Eventually p1 0.62 0.5 0.71 0.65 0.62 0.84
Always p1 0.68 0.51 0.72 0.54 0.76 0.81
p1 Until p2 0.7 0.5 0.61 0.63 0.73 0.8
Always p1 and Eventually p2 0.55 0.5 0.65 0.51 0.65 0.72
Always p1 or Eventually p2 0.71 0.5 0.61 0.68 0.61 0.78
Not p1 Until p2 0.5 0.5 0.68 0.71 0.77 0.85
p1 Until Not p2 0.5 0.5 0.64 0.53 0.66 0.78
Always (p1 and p2) 0.55 0.51 0.62 0.51 0.65 0.73
p1 and p2 Until p3 0.5 0.5 0.55 0.56 0.71 0.78
p1 Until Always p2 0.64 0.5 0.57 0.51 0.62 0.75
Eventually Always p1 0.64 0.5 0.62 0.7 0.76 0.79
Always Eventually p1 0.64 0.5 0.69 0.55 0.72 0.76
(Not p1) Until Eventually p2 0.5 0.5 0.61 0.59 0.59 0.81
(Not p1) Until Always p2 0.5 0.5 0.68 0.66 0.71 0.78
(p1 and p2) Until Eventually p3 0.5 0.5 0.55 0.65 0.62 0.84
Overall 0.58 0.5 0.63 0.6 0.68 0.79

4.3 Results for TP-query matching on the CSTOP benchmark.

R1: LogCSTOP outperforms other methods on TP query matching for videos. Table 1 reports
the overall balanced accuracies of different methods on CSTOP-RealTLV-video . LogCSTOP,
with detections from YOLOv8, reports the best performance with a balanced accuracy of 79%,
outperforming Video-LLava-7B and LongVA-7B by 29% and 16% respectively, and NSVS-TL by
21%. Moreover, LogCSTOP with other object detection models, such as Grounding DINO and
OWLv2, also report accuracies better or at par with other baselines. The differences arise from the
varying object detection performances of these methods. The low performances on the CSTOP
benchmark suggest that understanding of temporal queries is still an open problem for LVLMs.
Moreover, the higher accuracy of LogCSTOP with much smaller neural models (YOLO) suggests
that using well-defined logics for reasoning is beneficial.

R2: LogCSTOP performs well on all queries, across sequences of different lengths. Table 1
also shows the query-wise breakdown on the CSTOP-RealTLV-video dataset. LogCSTOP with
YOLOv8 performs the best amongst all methods, reporting accuracies over 70% on all 15 queries.
With detections from Grounding DINO, LogCSTOP reports the second best performance on 9/15
queries. LongVA-7B performs the second best on 3 queries while Video-LLava-7B performs poorly
with a 50% accuracy on all queries. We find that this can be attributed to only "Yes" responses
from the model. NSVS-TL also reports worse performance on queries from two categories: boolean
expressions over temporal operators, and temporal operators over boolean and temporal operators.

In Figure 2, we show the breakdown of TP-query matching performances of different methods by
video length. Interestingly, no method reports any drop in performance as the length of the sequence
increases. LogCSTOP with YOLO and Grounding DINO consistently outperform or match other
methods across lengths. LogCSTOP with YOLO reports accuracies > 75% on 4/5 lengths while all
other methods, namely NSVS-TL and the LVLMs, report accuracies < 70% across lengths.

R3: The design choices for LogCSTOP are empirically optimal. Finally, we evaluate how the
various design choices for LogCSTOP affect the performance. The choices include the aggregation
method used (LogCSTOP vs. other quantitative semantics for LTL), the effect of local smoothing,
and the adaptive thresholding for query matching. We find that using a different aggregation method,
namely the standard STL semantics discussed in Section 3.1, reduces the accuracy of query matching
with YOLOv8 detections by 2%. A 2% drop is also observed if the local smoothing and downsampling
step (Algorithm 1, line 8) is not performed. Finally, when the adaptive threshold is replaced by the
constant log 0.5 threshold, the accuracy drops by 3%.
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Figure 2: LogCSTOP reports the best and second-best performances (with YOLOv8 and Grounding
DINO respectively) across sequences of different lengths on the CSTOP-RealTLV-video dataset.

5 Related Work

Temporal Logic for video understanding. Recent works [23, 6] use the probabilistic model checker
STORM to verify temporal properties in LTL and PCTL over object detections in videos.

Quantiative semantics for Temporal Logic. Several quantitative semantics have been proposed for
different temporal logics [1, 9, 17, 8], for monitoring, control, etc. To the best of our knowledge, no
other work has explored using these for assigning confidence scores for temporal properties.

Benchmarks for video understanding. Existing benchmarks for video understanding such
as Video-MME [10], RexTIME [5], Next-qa [22], QVHighlights [13], TemporalBench [4] and
TempCompass [16] include tasks that require temporal understanding of actions and events in
videos. These tasks are fundamentally different from the CSTOP benchmark which focuses on more
fine-grained temporal properties.

6 Conclusion, Limitations and Future Work

In this work, we study the problem of assigning confidence scores for temporal properties (CSTOPs)
given potentially noisy confidence score predictors for local properties. We represent these properties
using LTL and propose a scoring function LogCSTOP inspired by quantitative semantics for Temporal
Logic. We introduce the CSTOP-RealTLV-video benchmark for evaluating LogCSTOP on the
downstream application of query matching with temporal properties (TP-matching) and find that it
outperforms LVLMs on TP-matching with videos.

Limitations. Firstly, there are properties such as "there are always 2 cars" that cannot be expressed
in LTL. Future work should hence explore more expressive logics [2] or construct local predictors
for complex properties. Secondly, we only evaluate LogCSTOP on one downstream application
but these scores can also be useful for other applications such as ranking and fine-tuning of local
predictors with high level feedback. Finally, we only consider one input modality for local properties
(video). It will be interesting to see LogCSTOP being used for multimodal applications where the
local properties are over different modalities with scores from different local predictors.
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A More Details on Quantitative Semantics for Temporal Logic

We now present more details on the standard quantitative semantics for Signal Temporal Logic (STL)
discussed in Section 3.1. A formula in Signal Temporal Logic can be written as:

φ := ⊤ | µ | ¬φ | φ1 ∧ φ2 | φ1 UI φ2

where µ = f(s(t)) ≥ 0 is a Lipschitz continuous function over the signal s and I = [t1, t2] is a time
interval, t2 ≥ t1 ≥ 0. The operators Eventually and Always can be defined as follows:

3Iφ := ⊤ UI φ

□Iφ := ¬3I¬φ

In the context of the CSTOP problem, s(t) = ŷ(·, t) and fc(s(t)) = ŷ(c, t)− τ . The query "car until
pedestrian" can be written as µcar(s(t)) UI µpedestrian(s(t)) where I = [0, T ] and µcar(s(t)) =
ŷ(car, t)− τ ≥ 0 (µpedestrian is defined similarly).

The STL quantitative semantics, also called robustness ρ, is defined as follows to indicate how much
a signal satisfies or violates the formula:

ρ(⊤, s, t) := ρ⊤

ρ(µ, s, t) := f(s(t))

ρ(¬φ, s, t) := −ρ(φ, s, t)

ρ(φ1 ∧ φ2, s, t) := min(ρ(φ1, s, t), ρ(φ2, s, t))

ρ(φ1 ∨ φ2, s, t) := max(ρ(φ1, s, t), ρ(φ2, s, t))

ρ(φ1 UI φ2, s, t) := sup
t′∈ t+I

(min{ρ(φ2, s, t
′), inf

t′′∈ [t,t′]
ρ(φ1, s, t

′′)})

ρ(□I φ, s, t) := inf
t′∈ [t+I]

ρ(φ, s, t′)

ρ(3I φ, s, t) := sup
t′∈ [t+I]

ρ(φ, s, t′)

where, ρ⊤ is the maximum robustness, i.e., ρ⊤ = b − τ for the CSTOP problem where b =
max(ŷ(·, ·)).
As discussed earlier, the robustness measure assigns similar scores to a wide range of sequences,
making it an unsuitable CSTOP solution for downstream applications such as ranking and optimiza-
tion. We present an example with the Always operator in Section 3.1. We now present more examples
with other operators where the confidence score assigned by the robustness measure differs from
LogCSTOP (here ŷ(·, ·) are in the log scale, τ = log(0.5) and the window w = 1 for LogCSTOP):

An example with Boolean operators. For example, consider assigning confidence scores to the
property "car and pedestrian" at t = 0 in two different scenarios:

ŷ1(car, t = 0) = log(0.9), ŷ1(pedestrian, t = 0) = log(0.6)

ŷ2(car, t = 0) = log(0.6), ŷ2(pedestrian, t = 0) = log(0.6)

Ideally, the confidence scores for "car and pedestrian" should follow the order: ŷ1(car ∧
pedestrian, t = 0) > ŷ2(car ∧ pedestrian, t = 0) since ŷ1(car, t = 0) > ŷ2(car, t = 0).
The robustness for both the cases is the same, i.e., log(0.6)− log(0.5), because of the min seman-
tics for the Boolean and operator. The LogCSTOP for the two cases are log(0.9) + log(0.6) and
log(0.6) + log(0.6) respectively, which reflect the expected order.

An example with the Until operator. Consider assigning confidence scores to the property "car
Until pedestrian" in two different scenarios:

ŷ1(car, t ∈ [0, 2]) = [log(0.6), log(0.6), log(0.6)]

ŷ1(pedestrian, t ∈ [0, 2]) = [log(0.4), log(0.4), log(0.9)]
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and,
ŷ2(car, t ∈ [0, 2]) = [log(0.6), log(0.6), log(0.6)]

ŷ2(pedestrian, t ∈ [0, 2]) = [log(0.4), log(0.4), log(0.6)]

Note that the only difference between the two scenarios is the score for "pedestrian" at t = 2 (a high
score of 0.9 for the first scenario and a lower score of 0.6 for the second scenario) . The robustness
for the two cases is the same because of the min semantics within the Until operator. LogCSTOP
assigns a higher score for the first scenario because of the difference at t = 2.

B Other Experiment Details

Compute Resources. All experiments were run on a shared cluster with the following GPUs: eight
NVIDIA A100 PCIe (80GB RAM each) and eight NVIDIA RTX A6000 (48GB RAM each).

C LogCSTOP and NSVS-TL Queries

We choose 15 temporal property templates for the experiments in Section 4.

The LogCSTOP queries for these templates are as follows:

1. Eventually p1: 3 p1

2. Always p1: □ p1

3. p1 Until p2: p1 U p2

4. Always p1 and Eventually p2: □ p1 ∧3 p2

5. Always p1 or Eventually p2: □ p1 ∨3 p2

6. (Not p1) Until p2: ¬p1 U p2

7. p1 Until (Not p2): p1 U ¬p2
8. Always (p1 and p2): □(p1 ∧ p2)

9. (p1 and p2) Until p3: (p1 ∧ p2) U p3

10. p1 Until Always p2: p1 U □ p2

11. Eventually Always p1: 3□ p1

12. Always Eventually p1: □3 p1

13. (Not p1) Until Eventually p2: ¬p1 U 3 p2

14. (Not p1) Until Always p2: ¬p1 U □ p2

15. (p1 and p2) Until Eventually p3: (p1 ∧ p2) U 3 p3

NSVS-TL [6] uses the model checker STORM [11] to verify if a given sequence satisfies a temporal
property, where the temporal properties are represented in Probabilistic Computation Tree Logic
(PCTL). In PCTL, the F , G and U operators represent the Eventually, Always and Until operators
respectively. The ∼, & and | operators represent the Boolean negation, and, and or operators
respectively. The operator P is used to indicate the ranges of probability of a given property being
satisfied: for example, P > 0.5[F φ] translates to "the probability of φ eventually being satisfied is
more than 0.5".

The PCTL queries for the 15 temporal property templates are as follows:

1. Eventually p1: P > 0.5 [F "p1" ]
2. Always p1: P > 0.5 [G "p1" ]
3. p1 Until p2: P > 0.5 [ "p1" U "p2" ]
4. Always p1 and Eventually p2: P > 0.5 [G "p1" &F "p2" ]
5. Always p1 or Eventually p2: P > 0.5 [G "p1" | F "p2" ]
6. (Not p1) Until p2: P > 0.5 [∼ "p1" U "p2" ]
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7. p1 Until (Not p2): P > 0.5 [ "p1" U ∼ "p2" ]
8. Always (p1 and p2): P > 0.5 [G "p1" &G "p2" ]
9. (p1 and p2) Until p3: P > 0.5 [ "p1" & "p2" U "p3" ]

10. p1 Until Always p2: P > 0.5 [ "p1" U G "p2" ]
11. Eventually Always p1: P > 0.5 [F G "p1" ]
12. Always Eventually p1: P > 0.5 [GF "p1" ]
13. (Not p1) Until Eventually p2: P > 0.5 [∼ "p1" U F "p2" ]
14. (Not p1) Until Always p2: P > 0.5 [∼ "p1" U G "p2" ]
15. (p1 and p2) Until Eventually p3: P > 0.5 [ "p1" & "p2" U F "p3" ]

D Detailed Results

In Section 4, we present the query matching results for the CSTOP-RealTLV-video dataset, across
sequences of different lengths and query templates. We now present the detailed results. Table 2,
Table 3, Table 4, Table 5, and Table 6 present the query-wise results for the CSTOP-RealTLV-video
dataset with sequences of lengths 10, 20, 30, 40, and 50 respectively.

Table 2: Results on the CSTOP-RealTLV-video dataset for sequences of length 10. The best
performing method is highlighted in bold and the second best is underlined.

Query NSVS-TL Video-LLaVA-7B LongVA-7B LogCSTOP
OWLv2 GroundingDINO YOLOv8

Eventually p1 0.69 0.5 0.76 0.76 0.67 0.84
Always p1 0.71 0.53 0.7 0.54 0.72 0.74
p1 Until p2 0.75 0.5 0.69 0.65 0.75 0.84
Always p1 and Eventually p2 0.59 0.5 0.64 0.53 0.64 0.71
Always p1 or Eventually p2 0.74 0.5 0.6 0.68 0.68 0.81
Not p1 Until p2 0.5 0.5 0.69 0.71 0.74 0.83
p1 Until Not p2 0.5 0.49 0.68 0.56 0.64 0.76
Always (p1 and p2) 0.57 0.54 0.6 0.52 0.64 0.72
p1 and p2 Until p3 0.5 0.5 0.57 0.5 0.64 0.72
p1 Until Always p2 0.63 0.5 0.54 0.5 0.6 0.76
Eventually Always p1 0.67 0.5 0.64 0.68 0.68 0.77
Always Eventually p1 0.65 0.51 0.72 0.56 0.72 0.76
(Not p1) Until Eventually p2 0.5 0.5 0.65 0.64 0.57 0.77
(Not p1) Until Always p2 0.5 0.5 0.64 0.64 0.66 0.73
(p1 and p2) Until Eventually p3 0.5 0.49 0.56 0.7 0.66 0.84
Overall 0.6 0.5 0.65 0.61 0.67 0.77
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Table 3: Results on the CSTOP-RealTLV-video dataset for sequences of length 20. The best
performing method is highlighted in bold and the second best is underlined.

Query NSVS-TL Video-LLaVA-7B LongVA-7B LogCSTOP
OWLv2 GroundingDINO YOLOv8

Eventually p1 0.57 0.5 0.71 0.74 0.62 0.83
Always p1 0.67 0.5 0.75 0.54 0.77 0.83
p1 Until p2 0.67 0.5 0.63 0.63 0.71 0.78
Always p1 and Eventually p2 0.54 0.5 0.69 0.51 0.62 0.71
Always p1 or Eventually p2 0.66 0.5 0.62 0.7 0.54 0.75
Not p1 Until p2 0.5 0.5 0.62 0.68 0.71 0.86
p1 Until Not p2 0.5 0.5 0.57 0.55 0.58 0.76
Always (p1 and p2) 0.54 0.5 0.68 0.51 0.63 0.7
p1 and p2 Until p3 0.5 0.5 0.53 0.59 0.7 0.79
p1 Until Always p2 0.61 0.5 0.56 0.5 0.61 0.69
Eventually Always p1 0.58 0.5 0.52 0.71 0.75 0.78
Always Eventually p1 0.58 0.5 0.6 0.52 0.65 0.71
(Not p1) Until Eventually p2 0.5 0.5 0.62 0.62 0.63 0.82
(Not p1) Until Always p2 0.5 0.5 0.65 0.6 0.66 0.77
(p1 and p2) Until Eventually p3 0.5 0.5 0.55 0.67 0.57 0.77
Overall 0.56 0.5 0.62 0.6 0.65 0.77

Table 4: Results on the CSTOP-RealTLV-video dataset for sequences of length 30. The best
performing method is highlighted in bold and the second best is underlined.

Query NSVS-TL Video-LLaVA-7B LongVA-7B LogCSTOP
OWLv2 GroundingDINO YOLOv8

Eventually p1 0.55 0.5 0.67 0.62 0.67 0.8
Always p1 0.61 0.5 0.71 0.53 0.67 0.75
p1 Until p2 0.61 0.5 0.59 0.6 0.77 0.74

Always p1 and Eventually p2 0.5 0.5 0.65 0.49 0.63 0.69
Always p1 or Eventually p2 0.67 0.5 0.59 0.62 0.6 0.69
Not p1 Until p2 0.5 0.5 0.69 0.64 0.75 0.84
p1 Until Not p2 0.5 0.5 0.58 0.56 0.66 0.81
Always (p1 and p2) 0.5 0.5 0.55 0.5 0.53 0.62
p1 and p2 Until p3 0.5 0.5 0.58 0.61 0.68 0.76
p1 Until Always p2 0.66 0.5 0.58 0.52 0.59 0.72
Eventually Always p1 0.54 0.5 0.53 0.61 0.68 0.69
Always Eventually p1 0.56 0.5 0.67 0.54 0.6 0.68
(Not p1) Until Eventually p2 0.5 0.5 0.52 0.56 0.56 0.71
(Not p1) Until Always p2 0.5 0.5 0.65 0.66 0.67 0.75
(p1 and p2) Until Eventually p3 0.5 0.5 0.53 0.76 0.68 0.84
Overall 0.55 0.5 0.61 0.59 0.65 0.74
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Table 5: Results on the CSTOP-RealTLV-video dataset for sequences of length 40. The best
performing method is highlighted in bold and the second best is underlined.

Query NSVS-TL Video-LLaVA-7B LongVA-7B LogCSTOP
OWLv2 GroundingDINO YOLOv8

Eventually p1 0.55 0.5 0.7 0.53 0.56 0.82
Always p1 0.62 0.5 0.73 0.52 0.78 0.84
p1 Until p2 0.62 0.5 0.56 0.58 0.65 0.73
Always p1 and Eventually p2 0.51 0.5 0.58 0.5 0.61 0.7
Always p1 or Eventually p2 0.65 0.5 0.65 0.71 0.67 0.85
Not p1 Until p2 0.5 0.5 0.65 0.69 0.74 0.79
p1 Until Not p2 0.5 0.5 0.61 0.49 0.6 0.7
Always (p1 and p2) 0.54 0.5 0.66 0.51 0.65 0.75
p1 and p2 Until p3 0.5 0.5 0.55 0.53 0.69 0.73
p1 Until Always p2 0.61 0.5 0.57 0.51 0.51 0.72
Eventually Always p1 0.61 0.5 0.67 0.72 0.79 0.79
Always Eventually p1 0.61 0.5 0.72 0.52 0.71 0.75
(Not p1) Until Eventually p2 0.5 0.5 0.61 0.56 0.58 0.85
(Not p1) Until Always p2 0.5 0.5 0.7 0.65 0.7 0.8
(p1 and p2) Until Eventually p3 0.5 0.5 0.55 0.56 0.61 0.86
Overall 0.55 0.5 0.63 0.57 0.66 0.78

Table 6: Results on the CSTOP-RealTLV-video dataset for sequences of length 50. The best
performing method is highlighted in bold and the second best is underlined.

Query NSVS-TL Video-LLaVA-7B LongVA-7B LogCSTOP
OWLv2 GroundingDINO YOLOv8

Eventually p1 0.74 0.5 0.71 0.59 0.57 0.93
Always p1 0.8 0.5 0.73 0.57 0.88 0.9
p1 Until p2 0.87 0.5 0.6 0.67 0.76 0.93
Always p1 and Eventually p2 0.63 0.5 0.69 0.54 0.73 0.77
Always p1 or Eventually p2 0.85 0.5 0.58 0.71 0.56 0.81

Not p1 Until p2 0.5 0.5 0.75 0.84 0.9 0.95
p1 Until Not p2 0.5 0.5 0.78 0.5 0.84 0.88
Always (p1 and p2) 0.62 0.5 0.61 0.5 0.82 0.85
p1 and p2 Until p3 0.5 0.5 0.53 0.57 0.86 0.92
p1 Until Always p2 0.68 0.5 0.61 0.5 0.77 0.85
Eventually Always p1 0.78 0.5 0.76 0.76 0.9 0.93
Always Eventually p1 0.79 0.5 0.72 0.59 0.9 0.89

(Not p1) Until Eventually p2 0.5 0.5 0.65 0.58 0.59 0.89
(Not p1) Until Always p2 0.5 0.5 0.75 0.75 0.87 0.87
(p1 and p2) Until Eventually p3 0.5 0.5 0.58 0.58 0.59 0.89
Overall 0.65 0.5 0.67 0.62 0.77 0.88
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