
Reframe Anything: LLM Agent for Open World Video
Reframing∗

Jiawang Cao1, Weiheng Chi3, Wenbo Zhu1 , Lirian Su1, Yuyang Sun1,2, Jay Wu1

1 Opus AI Research
2 Southeast University

3 National University of Singapore

Abstract

The rapid proliferation of mobile devices and social media has fundamentally
transformed content dissemination, with short-form video emerging as a dominant
medium. To adapt original video content to this format, manual reframing is often
required to meet constraints on duration and device screen size. This process is not
only labor-intensive and time-consuming but also demands significant professional
expertise. While machine learning models—such as video salient object detec-
tion—offer promising avenues for automation, existing approaches typically lack
human-in-the-loop interaction, making it difficult to accommodate personalized
user preferences. To address these limitations, AI systems must be capable of fully
understanding user intent and dynamically tailoring video reframing strategies in
response to evolving requirements. The powerful capabilities of large language
models (LLMs) make them particularly well-suited for handling such complex
multimodal interaction scenarios. Building on this insight, we introduce Reframe
Any Video Agent (RAVA), an LLM-based agent that integrates visual founda-
tion models with human instructions to intelligently restructure visual content for
video reframing. RAVA operates in three stages: perception, where it interprets
user instructions and video content; planning, where it determines suitable aspect
ratios and reframing strategies; and execution, where it invokes editing tools to
produce the final video. Our experiments demonstrate the effectiveness of RAVA
in both video salient object detection and real-world reframing tasks, showcasing
its potential as a powerful tool for AI-powered video editing.

1 Introduction

Short-form video has rapidly emerged as a dominant medium for content dissemination, driven by
the widespread adoption of social media platforms and handheld mobile devices [5]. The prevalence
of vertically-oriented displays, especially on mobile devices, has led to a fundamental shift in how
video content is produced, consumed, and optimized. However, traditional videos are often captured
in landscape orientation and may not be readily compatible with the varying aspect ratios used
across different platforms. This mismatch creates a growing demand for automatically adapting or
reconstructing original videos to suit diverse screen formats without compromising visual quality or
narrative coherence.

This transformation process, referred to as video reframing, entails dynamically selecting and
emphasizing the most semantically meaningful or visually compelling elements within a video.
From a creative and editorial standpoint, reframing often involves applying operations such as
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Figure 1: Overview of the open-world video reframing task. Even for the same video, different users
may focus on different subjects of interest. Thus, it is essential to implement video reframing based
on user instructions to fulfill personalized objectives.

cropping, panning, zooming, and compositing to ensure that the reframed video preserves viewer
engagement and conveys the intended message effectively.

Manual video reframing is both time-consuming and labor-intensive. It requires considerable domain
knowledge and aesthetic sensitivity on the part of professional editors, and often entails scene-
by-scene adjustment to maintain temporal consistency and visual balance. Consequently, manual
workflows significantly increase production costs and hinder scalability. To alleviate this burden,
researchers have turned to automatic reframing methods, especially those leveraging advances in
machine learning and computer vision.

A key direction in automated reframing is video saliency detection [40, 14], which aims to identify
spatial regions that are likely to attract human attention. For example, Christel et al. [4] propose
the use of bottom-up visual cues to compute saliency maps, which in turn guide cropping decisions.
However, such methods are typically driven by low-level features and may fall short in capturing
high-level semantics or task-specific preferences, resulting in suboptimal reframing outcomes.

To enhance semantic awareness, the field has evolved toward video salient object detection, which
focuses on segmenting temporally coherent and visually dominant objects across frames. These
approaches improve the preservation of meaningful content during reframing. Nevertheless, existing
models often exhibit limited generalization capabilities due to dataset bias and domain dependency,
and their performance may degrade in diverse or open-world settings. Furthermore, viewers’ subjec-
tive preferences introduce additional complexity. As illustrated in Figure 1, different users may focus
on different subjects within the same video. Therefore, it is crucial to develop a reframing framework
that is not only content-aware but also user-controllable through explicit instructions.

Recent advances in large language models (LLMs), such as ChatGPT [24] and GPT-4 [25], have
revolutionized the landscape of artificial intelligence. These models exhibit remarkable capabilities in
understanding and generating natural language, and have been shown to possess emergent reasoning
abilities across diverse tasks. More notably, the advent of multimodal LLMs like GPT-4V [26] has
enabled models to process and interpret visual content through text-based interactions. Such systems
can reason about visual scenes, describe spatial layouts, and align language with perceptual cues,
opening new possibilities for flexible, instruction-driven media generation.

Building on this paradigm, LLM-based agents have gained traction for their ability to orchestrate
complex workflows through high-level planning and natural language understanding. Examples
such as TaskMatrix [20], AutoGPT [43], and MetaGPT [11] demonstrate how LLMs can perform
perception, decision-making, and control in multi-step environments. Furthermore, systems like Ap-
pAgent [44] and MobileAgent [39] show the feasibility of using LLMs to operate mobile applications
and perform UI-level actions guided by user instructions.

Motivated by these developments, we propose Reframe Any Video Agent (RAVA), an LLM-based
agent designed to perform flexible and personalized video reframing based on natural language
instructions. RAVA is structured into three core stages: perception, planning, and execution. In the
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perception stage, RAVA parses user directives and analyzes video content to extract salient objects
and generate descriptive metadata. The planning stage uses this contextual information to formulate
reframing strategies, such as selecting aspect ratios, determining object priorities, arranging layouts,
and specifying visual effects that align with user intent. Finally, in the execution stage, RAVA
translates these strategies into concrete editing operations and applies them to the video, with support
for iterative refinement through user feedback.

To evaluate RAVA, we conduct experiments from two perspectives. First, we examine its capacity
to understand and follow user instructions in the context of video salient object detection, serving
as a proxy for semantic grounding. Second, we apply RAVA to real-world reframing scenarios,
including social media adaptation and vertical cropping tasks. Both quantitative results and user
studies demonstrate the utility and effectiveness of RAVA in enhancing AI-driven video editing
workflows.

Our main contributions are summarized as follows:

• We introduce RAVA, a novel LLM-based agent capable of performing flexible, personalized
video reframing guided by natural language instructions.

• We propose a structured framework comprising perception, planning, and execution stages,
enabling RAVA to interpret video content and user intent in a unified pipeline.

• We validate RAVA through extensive experiments on both benchmark and real-world tasks,
showing its potential to improve automation and personalization in video editing.

2 Related Work

Video Editing. Recent advances in movie analysis have notably progressed, particularly in the
area of Audio-Visual Event (AVE) Localization, which involves identifying and precisely localizing
events within a video [37, 9]. These advancements can aid video editors by streamlining the editing
workflow [33], although they do not directly enable automated video editing. Beyond such analysis,
several works have integrated machine learning techniques into the video editing process itself. For
example, Argaw et al. [3] introduce a benchmark suite targeting various video editing tasks, including
visual effects, automated footage organization, and assistance in video assembly. Similarly, Rao et
al. [31] propose a benchmark for selecting optimal camera angles from multiple inputs—an essential
component in television production. Despite these efforts, existing methods generally overlook the
task of video reframing, which focuses on emphasizing the most compelling segments of a video.
To address this, research on video salient object detection [12, 45, 36] has emerged as a promising
solution. However, these methods often rely on domain-specific training datasets, which limits their
generalization capabilities across diverse real-world scenarios and undermines their interpretability.
Overcoming these limitations remains a critical challenge for fully automated and flexible video
reframing.

Open Vocabulary Segmentation. Open Vocabulary Segmentation aims to partition images into
semantically meaningful regions without being restricted to a fixed set of predefined categories.
This represents a significant departure from traditional segmentation approaches [29, 18, 41], which
are typically constrained by limited label vocabularies and struggle to generalize to unseen objects.
Foundational models such as CLIP [30] and ALIGN [13] have paved the way for segmenting
novel object categories using natural language supervision. For instance, LSeg [19] trains an
image encoder to produce pixel-level embeddings, employing CLIP-derived text embeddings as
per-pixel classifiers. To exploit inexpensive image-level supervision, OpenSeg [10] introduces weakly-
supervised grounding losses and random word dropout to enhance alignment between textual and
visual modalities. Although substantial progress has been made, the field continues to face challenges
such as limited annotated data and difficulty scaling to diverse domains. To address this, SAM [16]
proposes a promptable foundation model for segmentation that delivers strong zero-shot performance.
Building on this, HQ-SAM [15] leverages the architecture and prior knowledge of SAM to generate
higher-quality masks. Similarly, MedSAM [21] demonstrates the potential of adapting SAM for
medical image segmentation, underscoring the broad applicability of these foundation models.

LLM Agent. The emergence of agentic frameworks such as AutoGPT [43], MetaGPT [11], and
HuggingGPT [34] illustrates the rapid integration of Large Language Models (LLMs) for performing
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Figure 2: The overall workflow of our proposed Reframe Any Video Agent (RAVA). RAVA receives
user input through a language user interface (LUI) tailored for reframing tasks, invokes an object
grounding function to retrieve relevant visual information from the video, and then automatically
performs reframing based on the user’s request.

complex and autonomous tasks. With the development of multimodal LLMs, including Flamingo [2],
Multimodal [8], and AudioLM [35], these models have evolved to handle diverse input modali-
ties—text, images, audio, and video—directly. This shift contrasts with earlier systems such as
TaskMatrix [20], which rely on auxiliary models to translate visual inputs into linguistic repre-
sentations through image captioning or object recognition. Leveraging these enhanced perceptual
capabilities, recent efforts such as AppAgent [44], MobileAgent [39], and VisualWebArena [17] have
developed agents capable of interacting with mobile applications and executing web-based tasks.
Despite the growing body of research on LLM agents, their application in video editing remains
relatively underexplored. One recent work, LAVE [38], introduces an agent capable of performing
user-goal-driven video editing. However, its functionalities are limited in scope. In contrast, our
proposed research delves deeper into leveraging LLMs for automated video reframing, aiming to
enhance the precision, flexibility, and human-alignment of video editing systems.

3 Reframe Any Video Agent

We introduce the Reframe Any Video Agent (RAVA), a novel framework for real-world video
reframing that leverages the power of large language models and supports a Language User Interface
(LUI) for intuitive user interaction. RAVA is designed to operate in open-world scenarios, where
video content may include previously unseen objects. The system robustly identifies all objects within
a scene, determines their relevance, and reframes video content into various aspect ratios tailored to
the requirements of different social media platforms.

In addition, RAVA enhances the visual experience by supporting two types of visual effects: intra-
scene (within a single scene) and inter-scene (between scenes). The entire video reframing process is
fully automated and consists of the following three key stages:

Object Grounding. Given an original video composed of M scenes, denoted as {S1, . . . ,SM},
each scene Sk contains N visual elements represented by segmentation masks {O1, . . . ,ON}. The
objective is to identify the most salient object(s), i.e., {Oi, . . . ,Oj} ⊆ {O1, . . . ,ON}, within each
scene Sk.

Layout Setting. In scenarios involving multiple important objects—such as conversational scenes—it
is necessary to determine a layout Lk ∈ {1, 2, 3, . . . , N} that specifies how these objects should be
arranged in sub-windows for simultaneous display. For each scene Sk, the final layout is expressed
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Figure 3: Video editing tools in RAVA: The first row shows Layout Settings, where L indicates the
number of selected objects. The second row, Effect In-scene, represents visual effects applied within
a scene, including Zoom in and Zoom out. The third row, Effect Trans-scene, illustrates transition
effects across scenes, including Fade in and Fade out.

as Lk = n, where n = count{i, . . . , j} corresponds to the number of selected salient objects
{Oi, . . . ,Oj}.

Effect Adding. Once layout configuration is complete, RAVA applies appropriate visual effects based
on scene content. Intra-scene effects include operations such as zooming in and out to emphasize
focus, while inter-scene effects—such as fade-ins and fade-outs—are used during transitions between
scenes Sk and Sk+1.

As illustrated in Figure 2, RAVA’s workflow automates the video reframing pipeline, enabling
adaptation to various aspect ratios and platform-specific standards. Through intelligent object
prioritization, layout adjustment, and visual effect integration, RAVA enhances user engagement and
streamlines content optimization for different audiences and distribution platforms.

3.1 Perception

The perception phase of RAVA is divided into two core components: language learning and video un-
derstanding. Language learning aims to capture the user’s focus and intent, while video understanding
interprets the visual content present in video frames.

LLMs are particularly adept at dialogue comprehension. By designing tailored prompts, the agent
can effectively interpret user goals—essentially structuring the input information received through
the Language User Interface (LUI). Specifically, we initiate the process by providing RAVA with a
video and a user-defined interest. This context includes both natural language input and additional
information retrieved from auxiliary tools, as detailed below. The LLM then produces a video topic
along with structured target information, which serves as input to the subsequent planning phase.

Inspired by cinematic scripts and production workflows, we employ shot detection to segment the
video into meaningful scenes. This is achieved using scenedetect2, which divides the original
video into M scenes, denoted as {S1, . . . ,SM}.

To understand these scenes, several tools are incorporated. RAM [46] is used to identify all visible
objects, followed by SAM [16] and Grounded-SAM [32] for extracting segmentation masks and
spatial locations. CLIP [30] is utilized to generate captions for each object. Consequently, each

2https://www.scenedetect.com/
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visual element Oi is represented by a triplet of caption, mask, and bounding box coordinates
{x1, y1, x2, y2}.

Ultimately, each scene’s visual semantics are converted into a structured textual description. For
example, as illustrated in Figure 2, a scene may be described as: “Scene-1: Object-1: a boy standing
in...”. This integration of natural language understanding and video analysis enables RAVA to
comprehensively perceive video content, laying the foundation for context-aware reframing.

3.2 Planning

Following the perception phase, which generates structured semantic understanding of video content,
the planning phase is responsible for devising a comprehensive strategy to guide video reframing.
This plan must accommodate varying aspect ratios, emphasize key objects, and apply suitable visual
effects to optimize both aesthetic quality and viewer engagement.

The planning phase in RAVA comprises the following components:

Aspect Ratio Determination. Determining the appropriate aspect ratio is fundamental. This decision
takes into account user preferences, platform constraints, and scene composition. The system
dynamically selects an optimal aspect ratio for each scene to ensure effective visual communication.

Object Importance Hierarchy. Among the objects identified in each scene, a prioritization mecha-
nism is needed. Leveraging the reasoning capabilities of the LLM, RAVA constructs a hierarchy of
object importance based on contextual relevance and user interest, which informs both selection and
layout decisions.

Dynamic Layout Configuration. Based on object importance and spatial positioning, RAVA
generates a layout configuration that enhances narrative coherence. As illustrated in Figure 3, layout
choices account for dialog interactions, scene dynamics, and the number of focal objects, arranging
them into sub-windows if necessary.

Visual Effect Strategy. RAVA formulates a plan for applying both in-scene and trans-scene effects,
guided by user input or automatically inferred intent. This includes decisions about the type, intensity,
and timing of effects such as zoom or fade, ensuring they support the storytelling rather than distract
from it.

Execution Blueprint. All planning results are compiled into a structured execution blueprint, encom-
passing scene-specific information such as aspect ratios, layout configurations, object selections, and
visual effect instructions. This blueprint is designed for direct parsing in the execution phase.

Agent Feedback Loop. Optionally, the agent can validate preliminary outputs by generating low-
resolution previews. These previews are reviewed by the LLM, which compares the result against
user goals and refines the blueprint if necessary.

This planning mechanism functions like a storyboard, offering a scene-by-scene breakdown of
actions to be executed. It transforms high-level directives into a detailed plan, ensuring smooth and
goal-aligned execution.

3.3 Execution

In the final execution phase, RAVA converts the planned blueprint into concrete actions. Using regular
expression parsing, the system extracts structured directives from the plan, each of which corresponds
to an executable function. For every scene Sk in the video {S1, . . . ,SM}, the execution settings
include layout Lk ∈ {1, 2, . . . , N}, selected object set {Oi, . . . ,Oj}, and visual effects for in-scene
Ein ∈ {zoom in, zoom out} and trans-scene Etrans ∈ {fade in, fade out}.

The system generates a JSON file encoding all execution settings for each scene. For example, if
Lk = 2, the system selects two primary objects and arranges them vertically. If Ein = {zoom in},
the corresponding API is called to magnify the objects. Similarly, if Etrans = {fade out}, the system
inserts a fade-out transition at the end of the scene.

While this work presents relatively simple implementations of visual effects, the underlying frame-
work is modular and extensible. Additional effects or editing functionalities can be seamlessly
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Table 1: Quantitative results for the Video Salient Object Detection (VSOD) task evaluated on the
DAVIS16 and FBMS datasets. We compare our proposed method against two baselines: UPL and
A2S-v2, under different scene detection (SD) configurations, where ‘SD’ denotes the number of
scenes segmented from the input video using scene boundary detection algorithms. The performance
is assessed using four commonly used metrics: Mean Absolute Error (MAE), maximum F-measure
(max-Fβ), maximum Enhanced-alignment metric (max-Em), and Structure-measure (Sm). Higher
values of Fβ , Em, and Sm and lower values of MAE indicate better performance.

Method SD DAVIS16 FBMS

α1 α2 MAE max-Fβ max-Em Sm MAE max-Fβ max-Em Sm

UPL
5 5

.0390 .8025 .9183 .8426 .0850 .6651 .8513 .7439
A2S-v2 .0663 .4858 .5786 .5817 .0851 .6444 .8366 .7004

Ours .0501 .7025 .8219 .7795 .1015 .5721 .7532 .6643

UPL
5 30

.0367 .8127 .9275 .8481 .0844 .6673 .8458 .7527
A2S-v2 .0638 .5046 .5929 .5926 .0832 .6406 .8288 .7054

Ours .0419 .6727 .8177 .7680 .1148 .5446 .7131 .6422

UPL
10 5

.0381 .8009 .9210 .8361 .0848 .6670 .8615 .7373
A2S-v2 .0640 .4907 .5723 .5836 .0900 .6299 .8446 .6836

Ours .0506 .7126 .8256 .7804 .1313 .5128 .6776 .6089

integrated by extending the action space and API interface. This design ensures that RAVA is not
only effective for current reframing needs but also adaptable to future demands in video editing.

4 Experiments

To evaluate the effectiveness of the proposed Reframe Any Video Agent (RAVA), we conduct
experiments on two key tasks that are central to video understanding and editing.

Video Salient Object Detection. In the first task, we apply RAVA to the well-established challenge
of video salient object detection, which involves segmenting the most visually prominent objects
as perceived by human viewers. This task serves as a proxy for evaluating the agent’s ability to
comprehend and prioritize visual content in alignment with human perception.

Video Reframing. In the second task, we evaluate RAVA on the video reframing task, where the
goal is to adjust the framing of video scenes to emphasize the most important elements. This not only
improves the visual composition but also enhances the narrative quality and user engagement of the
content.

These two tasks collectively demonstrate RAVA’s capabilities in both low-level visual understanding
and high-level editing decision-making, validating its potential as a general-purpose agent for AI-
driven video editing.

4.1 Video Salient Object Detection

Datasets & Metrics. We evaluate RAVA on two widely-used benchmarks: DAVIS16 [28] and
FBMS [23]. The DAVIS16 dataset comprises 50 videos with a total of 3,455 annotated frames,
while FBMS includes 33 videos and 720 annotated frames. To assess performance, we employ
four commonly adopted metrics: Mean Absolute Error (MAE) [27], F-measure (Fβ) [1], E-measure
(Em) [7], and S-measure (Sm) [6].

Settings. All videos are composed at 30 frames per second and then segmented into scenes using
shot detection. To ensure effective scene segmentation, we select a low threshold value α1 and a
relatively high minimum scene length α2—corresponding to the parameters threshold and min
scene length in scenedetect—to reduce the likelihood of detecting overly short or fragmented
scenes. Following segmentation, each scene is individually processed to generate salient object masks.
It is worth noting that in the perception phase, each object Oi is represented only by a caption and a
mask. This design choice is made to avoid excessive reframing, which could lead to jittery transitions
and negatively impact the viewing experience.
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Figure 4: Qualitative comparisons on two video salient object detection datasets against two state-
of-the-art methods. RAVA demonstrates robustness in challenging cases involving occlusion and
distractions, and occasionally even surpasses human annotations.

Results. We compare RAVA against two state-of-the-art video salient object detection methods:
UPL [42] and A2S-v2 [47]. As shown in Table 1, across different scene detection settings, RAVA
consistently achieves competitive performance. Although RAVA is not specifically designed for
video salient object detection, its strong performance validates the effectiveness and generality of the
framework.

We present qualitative results in Figure 4 for further analysis:

• (a) RAVA successfully segments the full instance of the Blackswan, while A2S-v2 yields an
incomplete mask, and UPL incorrectly includes background elements.

• (b) Under occlusion, RAVA maintains accurate segmentation; A2S-v2 incorrectly captures
parts of the occluding object, and UPL fails to account for the occlusion entirely.

• (c) When faced with distractors in the scene, RAVA correctly isolates the salient object,
whereas A2S-v2 and UPL are misled by irrelevant elements.

• (d) In certain challenging scenes, RAVA achieves results that are visually more accurate than
the provided human annotations, highlighting the strength of its segmentation capabilities.

Ablation Study. To evaluate the importance of visual perception, we conduct an ablation study
by replacing the multimodal LLM in RAVA with GPT-4 [25], which lacks direct visual processing
capabilities. While the visual inputs are omitted during perception, all other components and settings
are kept unchanged.

The results, presented in Table 2, show that even without direct visual input, GPT-4—guided by
textual scene descriptions—achieves reasonably good performance on both datasets. This highlights
the robustness and transferability of RAVA’s architecture. Nonetheless, the performance gap confirms
the necessity of incorporating vision-capable LLMs to achieve optimal results in multimodal tasks
such as video salient object detection.

4.2 Video Reframing

Settings. To assess the video editing capabilities of RAVA in the wild, a user study is conducted
with 12 participants. Edited versions of 20 videos are created using three reframe methodologies in
addition to RAVA:

• Editor: This method involves a professional video editor (experience more than 3 years)
who manually reframe the videos.
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Table 2: Performance of our framework on the Video Salient Object Detection (VSOD) task when
equipped with a single-modality Large Language Model (LLM), specifically GPT-4. The results
demonstrate that even when restricted to a single-modality LLM without direct visual input, the
system can achieve reasonable performance on both datasets, highlighting the strong generalization
ability of language-based perception and planning.

LLM SD DAVIS16 FBMS

α1 α2 MAE max-Fβ max-Em Sm MAE max-Fβ max-Em Sm

GPT-4
5 5 .0831 .6497 .7885 .7395 .1294 .4953 .6943 .6125
5 30 .0548 .6163 .7930 .7422 .1642 .4856 .6670 .5915
10 5 .0690 .6432 .7913 .7454 .1307 .4931 .6684 .6069

(a) CP (b) CC (c) UE (d) TQ

Figure 5: Overall scores of the individual attributes: Content Preservation (CP), Continuity and
Consistency (CC), User Experience (UE), and Technical Quality (TQ).

• Adobe: This method is based on the results obtained by ordinary users utilizing the reframe
tool in Adobe Premiere Pro to adjust the videos, following the instructions3.

• Center Cut: This method selects the center point of the video, maintaining a 9:16 aspect
ratio, with the width unchanged.

To minimize the impact of the video itself and to maintain an element of unbiased evaluation by
users, the open caption tool4 is employed to add captions for each video. After watching the original
video, each participant views the 4 edited versions in a random sequence. The participants review
all reframed videos, and they are unaware of the editing methods employed for each video. This
arrangement led to a comprehensive experimental design involving 20 (number of videos) × 12
(users) × 4 (editing strategies). Users are required to compare the reframed version of a video with
the original and provide a rating on a scale from 0 to 5 for each of the attributes. These attributes
were inspired by studies on video re-positioning[22], and it’s important to note that, although video
reframing and video repositioning differ technically, both aim to direct the attention of the viewer
to the focal scene events within given rendering constraints. Thus, some of the questions used to
assess methods of video re-positioning are also applicable to video editing. Our attributes of interest
include: Content Preservation, Continuity and Consistency, User Experience, and Technical Quality.

Results. As seen in the results presented in Figure 5 and outlined in our experimental data, the
traditional editing method, referred to as ‘Editor’, received the highest overall mean score of 4.32,
indicating a strong ability to maintain the relevance and completeness of the original content. This
could be attributed to the manual effort and expertise that video editors bring to the reframing
endeavor, ensuring that significant elements are not lost. Our proposed method, RAVA, achieves
an avarage score of 3.98 from four aspects, suggesting that while RAVA performs reasonably well
in terms of relevancy and scene completeness, there is room for improvement when compared to
professional editing. The performance of RAVA surpasses the automated ‘Adobe’ tool, with ‘Adobe’
scoring an mean score of 3.71. This close competition hints that RAVA is on par with other available
semi-automated video editing tools in terms of content preservation. The ‘Center Cut’ received
the lowest mean score of 2.78 in Content Preservation, reflecting its limited ability to identify and
maintain critical video elements.

The variability in scores, as indicated by the interquartile range in the boxplot, further substantiates the
need for an intelligent and context-aware reframing technique. Future work could explore enhancing

3https://helpx.adobe.com/premiere-pro/using/auto-reframe.html
4https://www.opus.pro/tools/opusclip-captions
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the object identification and importance determination algorithms of RAVA to further close the gap
between automated and professional video editing tools.

Besides, we strongly recommend that readers view the edited video included in the supplementary
materials for a more intuitive understanding.

5 Conclusion

In this work, we introduce Reframe Any Video Agent (RAVA), a novel LLM-based agent designed to
perform video reframing tasks guided by human instructions. Leveraging the powerful capabilities of
large language models, RAVA follows a structured three-stage pipeline—perception, planning, and
execution—to accurately interpret user directives, analyze video content, prioritize salient objects,
determine optimal layouts, and apply appropriate visual effects. This design ensures that the reframed
output aligns closely with both narrative intent and user preferences. Our extensive experiments,
encompassing both classic computer vision tasks and real-world video reframing scenarios, validate
the effectiveness of RAVA and highlight its potential in enabling AI-assisted video editing. Through
quantitative evaluations and user studies, we demonstrate that RAVA significantly enhances the
efficiency and personalization of video content creation, thereby offering a powerful tool for content
producers across diverse platforms.

Limitations. Despite its promising performance, the current system inherits limitations from its
reliance on foundational models. While these models provide strong general-purpose capabilities,
their performance can become a bottleneck depending on task complexity or domain specificity.
Future work can explore the integration of more advanced or specialized visual models to further
boost performance. Additionally, extending the agent’s capabilities to perform temporal video
editing—such as condensing long-form content into concise highlights—represents a compelling
direction for enhancing the flexibility and applicability of LLM-based video editing agents.
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A Rationale

Having the supplementary compiled together with the main paper means that:

• The supplementary can back-reference sections of the main paper, for example, we can refer
to sec:intro;

• The main paper can forward reference sub-sections within the supplementary explicitly (e.g.
referring to a particular experiment);

• When submitted to arXiv, the supplementary will already included at the end of the paper.

To split the supplementary pages from the main paper, you can use Preview (on macOS), Adobe
Acrobat (on all OSs), as well as command line tools.

1

https://support.apple.com/en-ca/guide/preview/prvw11793/mac#:~:text=Delete%20a%20page%20from%20a,or%20choose%20Edit%20%3E%20Delete).
https://www.adobe.com/acrobat/how-to/delete-pages-from-pdf.html#:~:text=Choose%20%E2%80%9CTools%E2%80%9D%20%3E%20%E2%80%9COrganize,or%20pages%20from%20the%20file.
https://www.adobe.com/acrobat/how-to/delete-pages-from-pdf.html#:~:text=Choose%20%E2%80%9CTools%E2%80%9D%20%3E%20%E2%80%9COrganize,or%20pages%20from%20the%20file.
https://superuser.com/questions/517986/is-it-possible-to-delete-some-pages-of-a-pdf-document
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