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Abstract

Videos inherently represent 2D projections of a dynamic 3D world. However, our
analysis suggests that video diffusion models trained solely on raw video data often
fail to capture meaningful geometric-aware structure in their learned representa-
tions. To bridge this gap between video diffusion models and the underlying 3D
nature of the physical world, we propose Geometry Forcing, a simple yet effective
method that encourages video diffusion models to internalize latent 3D repre-
sentations. Our key insight is to guide the model’s intermediate representations
toward geometry-aware structure by aligning them with features from a pretrained
geometric foundation model. To this end, we introduce two complementary align-
ment objectives: Angular Alignment, which enforces directional consistency via
cosine similarity, and Scale Alignment, which preserves scale-related informa-
tion by regressing unnormalized geometric features from normalized diffusion
representation. We evaluate Geometry Forcing on both camera view–conditioned
and action-conditioned video generation tasks. Experimental results demonstrate
that our method substantially improves visual quality and 3D consistency over the
baseline methods. Project page: https://GeometryForcing.github.io.

1 Introduction

Learning to simulate the physical world and predict future states is a cornerstone of intelligent
systems [27]. Recent advances in generative modeling [31, 60, 53, 9], coupled with the availability of
large-scale video datasets, have led to significant progress in generating realistic visual environments
conditioned on text descriptions [50, 81, 56, 25] or agent actions [32, 26, 17, 8]. However, these
approaches typically aim to model pixel distributions across video frames, overlooking a fundamental
principle: videos are 2D projections of a dynamic 3D world [24]. By focusing solely on image-space
generation, such models often struggle to maintain geometric coherence and long-term consistency,
particularly in autoregressive settings where small errors can accumulate over time [11, 15, 34].

Building on this motivation, a growing line of research has explored explicitly modeling the dynamic
3D structure of the physical world [49, 94, 1, 88, 47, 35], as opposed to implicitly learning distribu-
tions in 2D pixel space. For example, WVD [88] proposes transforming 3D coordinates into images
and jointly modeling the RGB and geometric information using diffusion models. While effective to
some extent, representing 3D information in a tractable form remains challenging, and the reliance
on additional annotations imposes limitations on scalability.

In this work, we aim to bridge the gap between video diffusion models and the underlying dynamic
3D structure of the physical world. We begin with a fundamental question: Can video diffusion
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Figure 1: Geometry Forcing equips video diffusion models with 3D awareness. (a) We propose
Geometry Forcing (GF), a simple yet effective paradigm to internalize geometric-aware structure
into video diffusion models by aligning with features from a pretrained geometric foundation model,
i.e., VGGT [69]. (b) Compared to the baseline method [63], our method produces more consistent
generations both temporally and geometrically. (c) Features learned by the baseline model fail to
reconstruct meaningful 3D geometry, whereas our method internalize 3D representation, enabling
accurate 3D reconstruction from the intermediate features.

models implicitly learn 3D information through training on raw video data, without explicit 3D
supervision? To investigate this, we analyze a pretrained autoregressive video diffusion model [63]
by introducing a DPT [59] head that maps its intermediate features to corresponding depth maps [69].
As illustrated in Fig. 1(c), we observe that features learned solely from raw video data fail to yield
meaningful geometric representations, highlighting a potential gap in the geometric understanding of
video diffusion models trained without additional guidance.

To address this limitation, we propose Geometry Forcing (GF), a simple yet effective approach that
encourages video diffusion models to internalize 3D representations during training. Inspired by
recent advances in semantic REPresentation Alignment (REPA) for image diffusion models [85], we
align intermediate features of video diffusion models with the geometric representations extracted
from a pretrained 3D foundation model [69]. To align these two representations, our method
introduces two complementary alignment objectives: Angular Alignment and Scale Alignment.
Angular Alignment enforces directional consistency between the diffusion model’s intermediate
features and geometric representations by maximizing their cosine similarity. Scale Alignment, in
contrast, preserves the scale information of the geometric representations by predicting unnormalized
geometric features from normalized diffusion features. The decoupled formulation of Angular and
Scale Alignment allows the model to capture both directional and scale-related aspects of geometry,
while improves stability during training and expressiveness in the learned representations.

We evaluate the effectiveness of GF on two widely adopted benchmarks: camera view-conditioned
video generation on RealEstate10K [93] and action-conditioned video generation on Minecraft
environment [6]. Experimental results demonstrate that our method delivers substantial gains in
geometric consistency and visual quality over the baseline methods. For example, GF reduces the
FVD from 364 to 243 on RealEstate10K benchmark. Moreover, the ability to reconstruct explicit
geometry during inference opens up opportunities for integrating structured memory into long-term
world modeling.

2 Related Work

2.1 Interactive World Modeling

A world simulator seeks to model the underlying dynamics of the physical world by predicting
future states conditioned on current observations and conditions [50, 8, 10, 52, 26, 3, 2]. We review
prior works through the lenses of interactive video generation, 4D generation, and consistent world
modeling.
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Interactive Video Generation. Recent advancements in generative models [31, 60, 53, 42], fueled
by the availability of large-scale video datasets, have positioned video generation as a promising
approach to world modeling. Beyond text-to-video synthesis [12, 13, 38, 68, 40, 43, 82], interactive
video generation [84] that emphasizes responding interactive control signals evolves rapidly. Existing
models incorporate different signals like camera controls [28, 86, 63] and action controls [17, 26,
22, 61]. Building on this progress, our work introduces a novel training pipeline that enhances 3D
consistency in video generation, enabling more coherent and realistic simulation of spatial scenes.

Interactive 4D Generation. In contrast to data-driven video simulators, 4D-based simulators [16,
5, 75, 83, 39] explicitly model dynamic 3D structures [36, 48, 77]. Building upon static 3D content
generation [58], these methods evolve from object-centric 4D modeling [79, 4], to more complex
dynamic scenes [49, 94]. Recent works further integrate video priors to improve the realism and
temporal coherence of 4D [1, 35, 47, 14], and explore leveraging video priors for robust 4D world
modeling. For example, TesserAct [92] predicts RGB, depth, and surface normals to reconstruct
temporally consistent 4D scenes. While our work shares the goal of unifying 3D and video generation,
it differs by injecting 3D geometric priors into the video representation to improve both temporal and
spatial coherence.

Consistent World Modeling. A key challenge in world modeling lies in maintaining consistency
over long video sequences. To address this, prior works have explored different forms of memory
and contextual guidance. Frame-level context mechanisms [11, 63, 23, 55, 76] introduce frame-level
context guidance by adding noise to context frames during training. Alternatively, several methods
leverage 3D information to enforce spatial coherence. For example, WorldMem [78] maintain a
memory bank indexed by field-of-view overlap to retrieve relevant historical frames. WVD [88]
propose jointly modeling RGB frames and point maps to main consistency. In contrast to these
approaches, we propose a unified method that internalizes 3D representations directly into the video
diffusion model, enabling stronger and more stable geometric consistency across time.

2.2 3D Foundation Models

3D foundation models (3DFMs) [69, 41, 54, 80, 90, 62, 70, 71] have recently shown remarkable
progress, offering end-to-end learning with fast and robust inference. These models are capable of
predicting a wide range of 3D properties, such as camera poses [90], depth maps [54], and dense
point clouds [69], directly from diverse visual inputs.

Due to their accuracy, efficiency, and robustness, 3DFMs are becoming essential for enabling in
downstream tasks like spatial reasoning [74, 33, 20], autonomous driving [21], SLAM [45, 46], and
beyond. Inspired by their strong 3D capabilities, we explore incorporating 3D representations into
video diffusion models to enhance temporal and spatial consistency for world modeling.

3 Preliminaries

Our approach builds upon autoregressive video diffusion models [11, 63, 15] and incorporates a
3D foundation model [69] into the training process to guide geometric learning. In this section, we
provide a brief overview of both components to establish the foundation for our method.

3.1 Autoregressive Video Diffusion Models

Training. We formulate our training pipeline based on Flow Matching [42, 44] with Transformer
backbone [67, 7], aiming for both simplicity and scalability. Let x = {x1, . . . , xI} denote a video
sequence sampled from the data distribution, we assign an independent timestep for each frame
t = {t1, . . . , tI} and corrupt frames via interpolation:

xti
i = (1− ti) · x0

i + ti · ϵi, where ϵi ∼ N (0, I).

The target velocity field is defined as the difference between noise and clean input. We train a neural
network vθ to minimize the Flow Matching loss:

LFM =
∥∥vθ(xt, t)− (ϵ− x)

∥∥2 .
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Sampling. At inference time, the sampling follows a simple probability flow ODE:

dx = vθ(x
t, t) · dt.

In practice, we iteratively apply the standard Euler solver [19] to sample data from noise. For
autoregressive generation, we initialize the inputs with a clean context and generate subsequent
frames sequentially, conditioning each prediction on the previously generated frames.

3.2 Visual Geometry Grounded Transformer

Visual Geometry Grounded Transformer (VGGT) [69] is a feed-forward model that directly outputs
various 3D attributes of a scene, including camera parameters, point maps, depth maps, and 3D point
tracks, from one, a few of its projected 2D views.

VGGT is composed of a Transformer backbone and multiple prediction heads. To make the Trans-
former focus within each frame and globally in an alternate way, the model employ Alternating-
Attention mechanism that interleaves frame-wise self-attention (intra-frame structure) and global
self-attention (inter-frame context). For each frame, local and global features are integrated into
a unified latent representation, which is subsequently processed by a set of task-specific heads to
produce corresponding 3D attributes. In our work, we leverage the features from the Transformer
backbone of VGGT to provide geometric priors for video diffusion models.

4 Geometry Forcing

4.1 Method Overview

Motivation. Recent advances in video diffusion models have enabled the simulation of the world
directly from large-scale video datasets. However, these models often overlook a fundamental
property of visual data: videos are 2D projections of an dynamic 3D world. To address this, we seek
to narrow the gap between video diffusion models and the dynamic 3D structure of the world.

Observation. We begin by examining whether video diffusion models are capable of implicitly
learning 3D information when trained solely on raw video data, without explicit 3D supervision.
To probe the geometric content of their learned representations, we adopt a strategy inspired by
linear probing [29]: we freeze the parameters of a pretrained video diffusion model [63] and train
a DPT [59] head to map intermediate features to corresponding depth map [69]. This allows us
to assess the extent to which geometric information is encoded in the model’s feature space. The
results, presented in Fig. 1(c), indicate that features learned solely from raw video data do not produce
meaningful geometric representations, suggesting a limited capacity of the model to encode dynamic
3D structure without explicit geometric guidance.

Challenge. Bridging the gap between video diffusion models and the dynamic 3D structure of the
world presents significant challenges, primarily due to the limited annotated 3D data. A straightfor-
ward approach is to jointly model RGB and geometric information within an end-to-end architecture.
However, relying heavily on 3D annotations can hinder the scalability and generalization ability of
the models, particularly when applied to large and diverse real-world video datasets.

In this work, inspired by recent advances in REPA [85], we propose Geometry Forcing (GF) that
aligns the features of video diffusion models with geometric representations, encouraging the model
to internalize geometric information. Our approach builds upon video diffusion models described in
Sec. 3.1. In Sec. 4.2, we introduce two regularization objectives designed to facilitate representation
alignment between the diffusion model and geometric foundation model. The overall training
objective, along with additional functional extensions, is summarized in Sec. 4.3.

4.2 Geometric Representation Alignment

To improve the geometric consistency of the learned representations, we introduce two complementary
alignment objectives: Angular Alignment and Scale Alignment. These objectives are designed to
align the latent features of the diffusion model with intermediate representations from a pretrained
geometric foundation model [69], ensuring both directional consistency and scale preservation of
geometric features within the feature space.

4



Angular Alignment. Angular Alignment enforces directional correspondence between the hidden
states of the diffusion model, denoted by h, and specified target features, denoted by y. We select
intermediate features from the Transformer backbone of VGGT [69] as y, as these features preserve
both local and global information within each frame and can be further used to reconstruct various
explicit geometric representations. In practice, the target features y ∈ RL×N×P×D, where L denotes
the number of layers, N denotes the number of input images, P denotes the patch count, and D
denotes the feature dimension. To achieve Angular Alignment, we first use a lightweight projector
fϕ to map the diffusion latents h ∈ RN×P ′×D′

to y’s shape. The Angular Alignment loss is then
defined as:

LAngular = − 1

LNP

L∑
ℓ=1

N∑
n=1

P∑
p=1

cos (yℓ,n,p, fϕ(hn,p)) ,

where cos(·, ·) denotes cosine similarity. This loss aligns hidden states independently at both the
frame and patch levels. Since the VGGT backbone already incorporates cross-frame attention, we do
not explicitly enforce global alignment across frames in the loss.

Scale Alignment. While Angular Alignment ensures directional consistency, it disregards feature
scale that could also encode geometric information. Although direct mean squared error (MSE)
loss could supervise magnitudes, it often leads to optimization instability and model collapse due to
inherent scale difference across models. To address this issue, we introduce Scale Alignment, which
preserves scale information through predicting the scale of target features given normalized diffusion
hidden states. Specifically, we first normalize fϕ(h) to unit length. Then we use a another lightweight
prediction head gφ to predict the full target features from normalized inputs:

ĥℓ,n,p =
fϕ(hn,p)

∥fϕ(hn,p)∥2
, ỹℓ,n,p = gφ(ĥℓ,n,p).

The Scale Alignment loss is defined as:

LScale =
1

LNP

L∑
ℓ=1

N∑
n=1

P∑
p=1

∥ỹℓ,n,p − yℓ,n,p∥22 .

This decomposition stabilizes training while capturing both directional and scale attributes of geomet-
ric representations.

4.3 3D-aware Autoregressive Video Diffusion Models

Building on the autoregressive video diffusion framework and the proposed alignment objectives, we
now present the overall training objective:

L = LFM + λAngular · LAngular + λScale · LScale.

Given that the intermediate features of our model are well-aligned with geometric representations,
an appealing consequence is the model’s ability to predict explicit 3D geometry during inference.
This enables unified generation of both video and 4D, effectively bridging the gap between videos
and the underlying dynamic 3D structure of the physical world, as illustrated in Fig. 1. Moreover,
the ability to reconstruct explicit geometry during inference provides a structured and interpretable
form of memory, which can be further utilized to support long-term world modeling and reasoning.
We leave the exploration of such geometry-based memory mechanisms as a promising direction for
future work.

Discussion. Teacher Forcing [73] is a widely adopted training paradigm for autoregressive mod-
els [57, 9, 37]. To combine autoregressive nature with diffusion models, Diffusion Forcing [11] is
introduced, which trains video diffusion models using independently sampled noise levels for each
frame. More recently, Self Forcing [34] is proposed to addressing exposure bias in autoregressive
video diffusion models. Orthogonal to these methods, Geometry Forcing focuses on improving
the spatial structure of the learned representations by aligning the intermediate representation of
autoregressive video diffusion models with geometry-aware signals from a pretrained 3D foundation
model. Our approach provides structural supervision at the representational level, encouraging the
model to internalize 3D consistency throughout training.
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Figure 2: Qualitative comparison of camera view-conditioned video generation under full-circle
rotation. Videos are generated from a single input frame and corresponding per-frame camera poses
simulating a full 360° rotation. Our method (GF) is compared with DFoT [63], VideoREPA [91], and
REPA [91]. The results demonstrate that the baseline methods fail to maintain temporal consistency,
while our proposed GF consistently revisit the starting viewpoint.

5 Experiments

In this section, we evaluate Geometry Forcing (GF) on camera view-conditioned video generation on
RealEstate10K [93] dataset and action-conditioned video generation on Minecraft environment [6].
We also provide more illustration and visualization in Appendix.

Implementation Details. For camera view-conditioned video generation [93], we apply GF to the
Diffusion Forcing Transformer [63]. Training uses 16-frame videos at 256×256 resolution for 2,500
iterations with a learning rate of 8× 10−6 and batch size 8. During inference, we condition the model
on the first frame and generate 256 frames. For action-conditioned video generation, we apply GF to
Next-Frame Diffusion [15], training on 32-frame videos at 384×224 resolution for 2,000 steps with a
learning rate of 6× 10−5 and batch size 32. By default, we set λAngular = 0.5 and λScale = 0.05 to
balance the contribution of each loss component. All experiments are conducted on 8 NVIDIA A100
GPUs.

Evaluation Metrics. We evaluate visual quality using standard video generation metrics, including
FVD (Fréchet Video Distance) [66], PSNR (Peak Signal-to-Noise Ratio), SSIM (Structural Similarity
Index) [72], and LPIPS (Learned Perceptual Image Patch Similarity) [89].

To further evaluate geometric consistency, we introduce two metrics: Reprojection Error (RPE) [18]
and Revisit Error (RVE) [78]. Reprojection Error (RPE) quantitatively measures multi-view geometric
consistency by calculating the average reprojection discrepancy between projected and observed
pixel locations across multiple views. Revisit Error (RVE) assesses long-range temporal consistency
by examining discrepancies between initial and revisited frames under complete camera rotation. We
provide more details of these metrics in the Appendix (Sec. B.4).

5.1 Main Results

This section presents the main experimental results, comparing our method against state-of-the-
art approaches across different tasks. The evaluation results demonstrate the effectiveness and
generalization ability of our method in both short- and long-term video generation.
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Table 1: Quantitative comparison on the RealEstate10K dataset for both short-term (16-Frame)
and long-term (256-Frame) video generation. Our method (Geometry Forcing) achieves the best
performance across all metrics. bold values denote the best, and Underlined values indicate the
second best. * indicates the method is conditioned on the first frame only.

Method Frames FVD↓ LPIPS↓ SSIM↑ PSNR↑ RPE↓ RVE↓

DFoT [63] 16 252 0.40 0.50 14.40 – –
REPA [85] 16 221 0.37 0.54 15.20 – –
VideoREPA [91] 16 210 0.37 0.54 15.20 – –
Geometry Forcing (ours) 16 193 0.32 0.58 14.70 – –
Geometry Forcing (ours) + REPA 16 179 0.34 0.54 15.00 – –

Cosmos* [2] 256 934 0.68 0.20 10.25 – –
DFoT [63] 256 364 0.55 0.36 11.40 0.3575 297
REPA [85] 256 297 0.54 0.36 11.51 0.3337 315
VideoREPA [91] 256 455 0.56 0.35 11.50 0.3823 190
Geometry Forcing (ours) 256 243 0.51 0.38 11.87 0.3337 272
Geometry Forcing (ours) + REPA 256 237 0.51 0.37 12.10 0.3264 236

Table 2: Ablation study on target represen-
tation. We compare the effect of aligning the
diffusion model with different target representa-
tions: DINOv2 (semantic), VGGT (geometric),
and their combination. The joint use of both rep-
resentation achieves the best FVD.

Target Representation FVD-256

Baseline 364
DINOv2 Only 297
VGGT Only 243
VGGT + DINOv2 237

Table 3: Ablation study on alignment loss. An-
gular and Scale Alignment losses are evaluated
for long-term video generation, with MSE as a
naive baseline of aligning both angular and scale
information. The combination of Angular and
Scale Alignment yields the best results.

Alignment Loss FVD-256
Baseline 364.0
Angular 253.0
Angular + Scale 243.0
MSE 1648.0

Camera view-conditioned Video Generation. We conduct comprehensive evaluation of GF on
the RealEstate10K [93] dataset, comparing against state-of-the-art baselines. We report results for
both short-term (16-Frame) and long-term (256-Frame) video generation in Tab. 1.
As shown in Tab. 1, our method consistently outperforms all baselines across multiple evaluation
metrics, including FVD, LPIPS, SSIM, and PSNR, in both the short-term and long-term generation
settings. These results highlight the effectiveness of GF in enhancing visual fidelity, temporal stability,
and 3D spatial consistency, thereby enabling more realistic and coherent world modeling.

Action-conditioned Video Generation. To demonstrate the generality of our method, we apply
GF to Next-Frame Diffusion [15] model. As shown in Tab. 5, the model achieves a lower FVD score
which indicates GF can be seamlessly integrated into video diffusion models and leads to measurable
gains. Note that, there exists a large data distribution gap between real world and Minecraft. This
results demonstrate that GF generalize well on out-of-domain distribution.

5.2 Qualitative Results

Fig. 2 presents qualitative comparisons on the RealEstate10K dataset. Each video is generated from
a single input frame along with camera poses simulating 360° rotation. We compare GF against
baselines: DFoT [63], REPA [85], and VideoREPA [91]. As shown in Fig. 2, our method reconstructs
the initial frame when the camera completes rotation, while producing reasonable and realistic
intermediate views. In contrast, the baseline methods fail to maintain temporal and scene consistency,
resulting in implausible results and unable to revisit the starting viewpoint. These results highlight
the superior long-term 3D consistency and scene understanding of our approach.

5.3 Ablation Studies

We provide a series of ablation studies to validate the design of GF.
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Table 4: Ablation study on method to integrate
geometry information. We compare external
condition (via ControlNet) with internal align-
ment (via Geometry Forcing).

Method FVD-256↓

Baseline 364
External Condition 275
Geometry Forcing (ours) 243

Table 5: Evaluation on action-conditioned
video generation in Minecraft. FVD results of
NFD before and after applying Geometry Forc-
ing (GF) on 16-Frame generation show clear im-
provement.

Method FVD-16↓

NFD 216
NFD + GF 205

Which Representation Should be Aligned? To validate the effectiveness of geometric representa-
tion, we compare two target representations in GF: VGGT [69], trained on 3D datasets with strong
geometric priors, and DINOv2 [51], trained on 2D images focusing on semantic features. As shown
in Tab. 2, aligning with VGGT consistently outperforms DINOv2 on both long-term and short-term
generation tasks, highlighting the advantage of geometric alignment over semantic supervision.

To further explore their complementarity, we combine VGGT and DINOv2 features as joint su-
pervision targets. Results in Tab. 2 show that integrating geometric and semantic signals leads to
additional gains, suggesting that the two types of representations are orthogonal and can enhance
each other when used together. However, as we mainly focus on bridging the gap between the video
diffusion model and the dynamic 3D structure of the real world, we only use VGGT features in
further experiments.

Alignment Loss. GF consists of two alignment objectives: Angular Alignment and Scale Alignment.
To validate their effectiveness, we compare three alignment loss types: (1) Angular Alignment alone
(Sec. 4.2), (2) Angular Alignment with Scale Alignment (Sec. 4.2), and (3) MSE loss between
VGGT and diffusion features. As shown in Tab. 3, the combination of Angular Alignment and Scale
Alignment achieves best performance, indicating the benefit of aligning both angular and scale-related
information. Although direct mean squared error (MSE) also supervises magnitudes, the change
of feature scale of the diffusion model may cause collapse in the following layers. These results
highlight that neither Angular Alignment nor Scale Alignment alone is sufficient.

How Can Geometry Information be Integrated into Video Diffusion Models? To validate the
effectiveness of internalizing geometric representation in the video diffusion model, we compare two
strategies to incorporate geometric representation: internal alignment through GF and external guid-
ance via an additional ControlNet [87] (Geometry ControlNet). In the external guidance experiment,
we obtain intermediate features from the transformer backbone of VGGT (identical to the one used
in GF). Then we feed the intermediate features into a ControlNet attached to DFoT. This approach
introduces geometry information as external conditions. In contrast, GF encourages the model to
internalize geometric features.

As shown in Tab. 4, while the external guidance produces improvements over the baseline DFoT
model, it still underperforms compared to GF. This suggests that integrating geometric priors into the
model is more effective than supplying them as external conditions. By aligning internal features with
geometric representations, GF enables deeper geometric understanding and yields better performance
in terms of perceptual quality and structural consistency.

Which Layer Should be Aligned? As shown in Fig. 3, we also explore applying alignment at
different layers of the video diffusion model [63], which uses a 7-layer U-ViT [7] backbone (3
downsampling layers, 1 bottleneck layer, 3 upsampling layers). Aligning at layer 3 yields the best
FVD-256 score while preserving FVD-16 performance.

Mitigating Exposure Bias in Autoregressive Video Diffusion Model via Geometry Forcing.
Exposure bias is a long-standing challenge in autoregressive video generation [11, 63, 64, 15, 34].
While previous methods attempted to address it through memory mechanisms or context guidance,
GF offers an orthogonal solution. As shown in Fig. 4, GF mitigates long-term drift and reduces the
accumulation of error during generation significantly by aligning 3D geometric representation. These
results validate integrating 3D representation enables more reliable and coherent long-term video
synthesis.
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Figure 3: Ablation study on alignment
depth. We present FVD-256 and FVD-16
results for different alignment layers of diffu-
sion model which suggest mid-level feature
is most effective to improve video quality.

Figure 4: Exposure bias analysis. This fig-
ure shows the trend of FVD scores during
long-term video generation. Compared to
the baseline, GF results in significantly lower
FVD after 100 frames.

Table 6: User study. Average scores (1–5) on Camera Following, Object Consistency, and Scene
Continuity. Each user was shown one case at a time and asked to rate each dimension on a scale of 1
to 5. Higher values indicate better quality.

Method Camera Following Object Consistency Scene Continuity

DFoT 3.56 2.73 2.74
REPA 3.82 3.55 3.66
VideoREPA 3.31 3.05 2.82
Geometry Forcing 4.40 4.44 4.52

5.4 User Study
While Reprojection Error (RPE) and Revisit Error (RVE) provide useful signals for measuring
3D consistency, they only capture specific geometric aspects and may miss perceptual artifacts or
unrealistic dynamics that humans can easily notice. Additionally, we conduct a user study focusing
on three aspects of 3D consistency. 1) Camera Following: Whether the camera in the video moves
smoothly and accurately follows the given pose trajectory. 2) Object Consistency: Whether objects
remain consistent in shape, appearance, and position across frames. 3) Scene Continuity: Whether
the generated parts of the scene beyond the context frames remain coherent and reasonable.

As shown in Tab. 6, GF consistently outperforms all baselines across the three aspects of 3D
consistency, demonstrating its effectiveness in producing geometrically coherent videos.

6 Conclusion
This paper introduces Geometry Forcing (GF), a simple yet effective framework that enhances the
geometric consistency of autoregressive video diffusion models by aligning their internal represen-
tations with geometry-aware features. Motivated by the observation that video diffusion models
trained on raw pixel data often fail to capture meaningful 3D structure, our method proposes two
alignment objectives (Angular Alignment and Scale Alignment) guide the latent feature align with
3D-aware freature from geometric foundation model. Empirical results on both camera-conditioned
and action-conditioned video generation benchmarks demonstrate that GF significantly improves
visual quality and 3D consistency, yielding lower FVD scores and more stable scene dynamics.

Limitations. The primary limitation of this work lies in its scale. While GF consistently improves
geometric consistency and visual quality, its full potential remains unexplored under large-scale
training. In particular, we have not yet investigated its effectiveness when applied to larger models
and more extensive video datasets, which may further amplify its benefits.

Future Work. Future directions include scaling GF on larger datasets to build 3D-consistent world
simulators, and applications for long video generation by treating 3D representation as memory.
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Appendix for Geometry Forcing:Marrying Video Diffusion and 3D
Representation for Consistent World Modeling

A Limitations

Our method’s reliance on VGGT (trained mainly on static scenes) constrains performance in dynamic
environments. Generalization to significant motion scenarios requires further research.

B Implementation Details

B.1 Dataset

RealEstate10K [93]. This dataset contains camera poses for 10 million video frames, suitable for
evaluating 3D consistency and camera navigation in generated videos. We use a resolution of 256 ×
256 pixels.

Minecraft [6]. This game dataset includes action annotations, enabling evaluation of video genera-
tion in dynamic environments with camera motion.

Alignment Projection To maximize geometric information retention, we aggregate features from
all transformer blocks of the VGGT backbone as alignment targets. For computational efficiency,
we apply bilinear interpolation to reduce the spatial dimensions from the original resolution to a
manageable size of 512×512 tokens.

The alignment is performed using a Conv3D-based projector that operates on the latent dimen-
sions. To accommodate multi-layer and multi-target alignment scenarios, we initialize independent
projectors for each feature layer and target representation. This design ensures effective dimen-
sional compatibility between the U-ViT feature space and the target geometric representations while
maintaining computational efficiency.

B.2 Training

Model Architecture. We adopt a U-ViT backbone for video generation, with geometric feature
alignment integrated at the third transformer block.

Training Data. The model is trained on 10,000 video clips sampled from the RealEstate10K
training dataset, each comprising 16 consecutive frames.

Training Protocol. Training proceeds for 2 epochs using a learning rate of 8× 10−6 and a global
batch size of 40. The geometric alignment loss is combined with the standard diffusion training
objective.

B.3 Inference

A key advantage of Geometry Forcing is its inference-time efficiency which introduces no compu-
tational overhead during sampling. We demonstrate results using a DDIM sampler with 50 steps,
though the approach is compatible with any standard diffusion sampling algorithm.

B.4 Metrics

In this section,we introduce the detailed implementation of Reprojection Error (RPE) and Revisit
Error (RVE).

Reprojection Error. Reprojection error (RPE) is a widely used metric in visual SLAM to evaluate
multi-view geometric consistency. Following (author?) [18], we utilize DROID-SLAM [65] to
reconstruct scene. Specifically, DROID-SLAM first extracts corresponding features across frames
and then refines camera poses (Gt) and per-pixel depth estimates (dt) through its differentiable Dense
Bundle Adjustment (DBA) optimization, enforcing optical flow constraints and achieving robust
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structure-from-motion. The reprojection error is then computed by measuring the average Euclidean
distance between the projected and observed pixel locations of co-visible 3D points across multiple
frames. Formally, RPE is defined as:

RE =
1

|V|
∑

(i,j)∈V

∥∥p∗
ij −Π(Pij)

∥∥
2
, (1)

where V denotes the set of valid feature correspondences, pij is the observed pixel location in
generated video frames, Pij represents the corresponding reconstructed 3D point derived from
refined depths and camera poses, and Π denotes the camera projection function. Lower RPE values
indicate better 3D alignment, reduced spatial artifacts, and enhanced spatio-temporal stability, thereby
effectively reflecting the overall geometric coherence and consistency of the generated videos.

Revisit Error. Revisit Error evaluates long-range temporal consistency under full camera rotation,
inspired by the setup proposed in WorldMem [78]. For each of 100 randomly sampled RealEstate10K
video clips, we extract the first frame and initial camera pose. A camera trajectory of 256 frames is
then constructed by rotating the initial camera pose around the Y-axis. We assess revisit consistency
by comparing the first and final frame using reconstruction FID (rFID) [30]. Larger discrepancies
indicate greater geometric or appearance drift, suggesting weaker long-term 3D consistency.

B.5 3D Reconstruction from Diffusion Features

In this section, we provide a detailed overview of the 3D reconstruction process illustrated in Fig. 1(c).

Reconstruction using Geometry Forcing Features. We extract features from the Geometry
Forcing (GF) model and pass them through the depth prediction head of VGGT to obtain the
predicted depth map.

Reconstruction using Diffusion Features. Motivated by our linear probing experiments, we
investigate the 3D reconstruction capability of intermediate features extracted from DFoT [63].
Specifically, we freeze the pretrained DFoT backbone and train a DPT head [59] to regress depth
maps from its intermediate representations. The target depth maps are provided by the VGGT
model [69], serving as ground-truth supervision. The DPT head adopts the same architecture as the
depth prediction module used in VGGT but is trained from scratch. We optimize the DPT head for
2500 steps using a learning rate of 1× 10−4 and a batch size of 4.

C Discussion

C.1 Computational Efficiency

The geometric alignment loss increases per-step computation by 50%, but accelerates convergence
to reduce total training time. For fine-tuning, our method requires only several thousand steps and
completes within hours, offering substantial efficiency gains over full pre-training.

C.2 Analysis of Geometric and Semantic Representations

We analyze the roles of geometric and semantic representation alignment in video generation. First,
these representations exhibit considerable overlap rather than orthogonality. Semantic representa-
tions like DINOv2 [51] demonstrate zero-shot depth estimation capabilities (see Section 7.5 and
Figure 7 in the original paper), indicating inherent geometric understanding. Conversely, geomet-
ric representations such as VGGT utilize DINOv2 features as inputs, thereby encoding semantic
information.

Second, experimental results in Table 1 and Table 2 show that VGGT alignment primarily en-
hances 3D consistency, while DINOv2 alignment improves visual quality. The combination of both
representations achieves superior performance compared to either individual approach.

Finally, the distinct contributions of each representation can be characterized as follows: semantic
alignment enhances object realism and visual details, whereas geometric alignment ensures structural
consistency and shape coherence throughout the generated video sequences.
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C.3 3D Consistency and Exposure Bias Mitigation

As shown in Figure 4, the FVD metric increases at a slower rate when Geometry Forcing is employed,
indicating effective mitigation of exposure bias in long-term video generation. The underlying
mechanism can be understood through the inherent stability of 3D scenes: while the number of
generated frames increases, the underlying scene geometry remains same. Geometry Forcing enables
the model to internalize this geometric consistency, thereby reducing error accumulation when
regenerating frames from previously encountered viewpoints.

C.4 Supplementary Visualizations

In order to better understand the geometry influences, we provide comprehensive visual results.
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Figure 5: Qualitative comparisons on camera-conditioned video generation. All the videos are
generated given first frame and per-frame camera pose. We comprehensively compare GF (ours) with
DFoT [63], VideoREPA [91], REPA [91]. The results demostrate consistency in long-term video
generation both inside (left) and outside (right) scenes.

Fig. 5 presents qualitative comparisons on the RealEstate10K dataset. Given the same first frame
and per-frame camera trajectory as input, we compare our proposed GF method with three strong
baselines: DFoT [63], REPA [91], and VideoREPA [91].

As shown in Fig. 5, our method generates visually coherent and geometrically consistent videos
over long time horizons even context is limited. In particular, GF better preserves object shapes
and scene layouts that is visible in context, while generating reasonable scenes not seen in the
context. In contrast, baseline models often exhibit drift, shape distortion, or abrupt transitions. These
results highlight the effectiveness of internalizing geometric priors to enhance spatial and temporal
consistency in video generation.
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