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Abstract

We present DriveGen3D, a novel framework for generating high-quality and highly
controllable dynamic 3D driving scenes that addresses critical limitations in ex-
isting methodologies. Current approaches to driving scene synthesis either suffer
from prohibitive computational demands for extended temporal generation, focus
exclusively on prolonged video synthesis without 3D representation, or restrict
themselves to static single-scene reconstruction. Our work bridges this method-
ological gap by integrating accelerated long-term video generation with large-scale
dynamic scene reconstruction through multimodal conditional control. Drive-
Gen3D introduces a unified pipeline consisting of two specialized components:
FastDrive-DiT, an efficient video diffusion transformer for high-resolution, tem-
porally coherent video synthesis under text and Bird’s-Eye-View (BEV) layout
guidance; and FastRecon3D, a feed-forward reconstruction module that rapidly
builds 3D Gaussian representations across time, ensuring spatial-temporal con-
sistency. Together, these components enable real-time generation of extended
driving videos (up to 424× 800 at 12 FPS) and corresponding dynamic 3D scenes,
achieving SSIM of 0.811 and PSNR of 22.84 on novel view synthesis, all while
maintaining parameter efficiency.

1 Introduction

The synthesis of 3D dynamic driving environments has emerged as a key research frontier in
autonomous systems, driven by its wide-ranging applications in simulation, perception, and planning.
While recent advances in video generation [1–7] and 3D scene reconstruction [8–16] have made
substantial progress, a critical gap remains: the lack of an integrated and efficient framework that
unifies long-horizon video synthesis and large-scale 3D scene reconstruction under multimodal
control.

Existing methodologies typically address either temporal coherence in video generation or spatial
fidelity in scene reconstruction—but not both—often requiring high computational cost or suffering
from limited scalability. For example, state-of-the-art diffusion-based models like MagicDriveDiT [2]
can produce high-resolution driving sequences but require up to 30 minutes to generate a single
1600× 900 video, making them impractical for real-time use.

From the reconstruction perspective, optimization-based approaches [17, 8–10] are similarly time-
consuming, often needing 30 minutes per scene. While recent feed-forward methods [18–20, 11–13]
have reduced reconstruction time to seconds, they remain limited in scale and rarely integrate with
dynamic video generation pipelines.
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Figure 1: Overview of DriveGen3D. (a) Given textual and BEV layout conditions, our model first
employs an accelerated Video Diffusion Transformer to synthesize a long driving video. (b) Next, a
per-frame 3D Gaussian Splatting representation is utilized to construct entire scene from the generated
video frames.

To bridge this gap, we propose DriveGen3D, an efficient and unified framework that integrates
two specialized modules: FastDrive-DiT, an accelerated video diffusion transformer for high-
resolution driving video generation, and FastRecon3D, a feed-forward reconstruction pipeline that
builds dynamic 3D scenes from multi-view video frames in real time. FastDrive-DiT employs
both diffusion step caching and quantized attention to reduce inference time by over 2×, while
FastRecon3D leverages temporal-aware Gaussian splatting to produce high-fidelity reconstructions
with minimal latency. Together, these components enable high-quality video generation and complete
3D reconstruction within 6 minutes, significantly outperforming prior methods in both efficiency and
scalability, as shown in Figure 2.

2 Method
2.1 Overview

Figure 2: Performance vs. Efficiency. Drive-
Gen3D achieves the highest SSIM (0.811)
while significantly reducing generation time
to 6 minutes—an 80% improvement over
optimization-based and diffusion-based base-
lines—demonstrating superior video quality and
real-time capability.

DriveGen3D, as illustrated in Figure 1, is an inte-
grated 3D driving scene generation system com-
posed of two key components: FastDrive-DiT
for efficient long video generation, and FastRe-
con3D for feed-forward 3D scene reconstruc-
tion. The pipeline begins with FastDrive-DiT,
which synthesizes high-resolution, temporally
coherent driving videos under conditional guid-
ance. These generated videos are then passed to
FastRecon3D, which reconstructs dynamic 3D
scenes in a feed-forward manner using temporal-
aware Gaussian splatting. Together, these mod-
ules enable rapid and scalable 3D scene generation suitable for real-time simulation and autonomous
driving applications.

2.2 FastDrive-DiT

Generating 3D driving scenes, especially in the autonomous driving domain, is notoriously time-
consuming due to the multi-view nature of the data. The video generation step is particularly costly
because of the underlying diffusion process. For instance, MagicDriveDiT can take up to 30 minutes
to produce a video of resolution 1600 × 848 × 6 × 233. To address this inefficiency, we propose
FastDrive-DiT, an enhanced and lightweight video diffusion model built on MagicDriveDiT with
targeted acceleration strategies.

Diffusion steps acceraleration. To accelerate video generation, we incorporate TeaCachee[21], a
training-free caching method for diffusion models. TeaCache approximates changes in model outputs
across timesteps, enabling efficient caching that achieves up to a 4.41× speedup over Open-Sora-Plan
without sacrificing visual quality.
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Figure 3: Visualization of multiview reconstruction video.
Our key optimization is to compute TeaCache’s coefficients using only the conditional branch of the
model, unlike the original implementation. This modification reduces computational overhead and
further speeds up inference with no noticeable degradation in performance.

Quantized DiT. SageAttention[22] is an efficient and accurate quantization method designed to
accelerate attention mechanisms in transformers, which are computationally intensive with O(N²)
complexity. SageAttention2[23] further enhances efficiency by introducing INT4 quantization for Q
and K matrices, FP8 for P and V , and precision-enhancing techniques like outlier smoothing and
FP32 Matmul buffers. It achieves 3× and 5× higher OPS than FlashAttention2 on RTX4090, with
negligible accuracy loss.

We carefully analyze the inference profiling and visualize Q×K × V of different attention blocks,
pointing out potential improvement techniques. In this paper, applying sageattention to the transformer
blocks saves an additional 30 seconds of inference time with nearly no performance degradation.

2.3 FastRecon3D

While the aforementioned methods enable realistic driving scene generation, applications like sim-
ulation require complete 3D scene models. To enable rapid novel scene synthesis, we introduce
FastRecon3D, a feed-forward reconstruction module that avoids costly optimization while preserving
quality.

Per-Frame 3D Representation. Following DrivingForward [11], we propose a temporal-aware
Gaussian Splatting formulation that reconstructs per-frame 3D Gaussian models while maintaining
3D consistency. In our approach, each time step is represented by a set of 3D Gaussian primitives:
Gt

i = {Gt
i}

Nt
i=1 = {(µi,Σi, αi, ci)}Nt

i=1

Recursively reconstruction from videos. For the frame generation of the t+ 1 timestep, we extract
all frames from time steps t− 1 to t+1 to reconstruct the scene at time t. Formally, for each timestep
t, given multi-view images {Iti}

Nt
i=1 and temporal neighbors {It±∆

i }Nt
i=1, our model predicts Gaussian

parameters Gt = {µt,Σt, αt, ct} and save it as a 3D model: Gt = F
(
{It−∆

i , Iti , I
t+∆
i }Nt

i=1

)
.

By leveraging both past and future context, this recursive reconstruction method effectively captures
dynamic scene elements while maintaining high spatial fidelity. As a result, our approach produces
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Type Method Venue PSNR ↑ SSIM ↑ LPIPS ↓

Static MVSplat ECCV 2024 22.83 0.629 0.317
pixelSplat CVPR 2024 25.00 0.727 0.298

Dynamic

UniPad CVPR 2024 16.45 0.375 -
SelfOcc CVPR 2024 18.22 0.464 -
EmerNeRF ICLR 2024 20.95 0.585 -
DistillNeRF NeurIPS 2024 20.78 0.590 -
DrivingForward (640p) AAAI 2025 21.67 0.727 0.259
DrivingForward (228p) AAAI 2025 21.76 0.767 0.194

Ours (w/ GT images) NextVid@NeurIPS 2025 23.71 0.733 0.285
Ours (w/ GEN images) NextVid@NeurIPS 2025 22.84 0.811 0.332

Table 1: Comparison of our method against prior feed-forward and optimization-based methods. The
last two rows show novel view rendering performance with either GT or generated video input. All
metrics are computed at frame t given t−1 and t+1 as inputs.

Total spatial temporal cross-view cross other

615 s 104 s 82 s 163 s 62 s 204 s

Table 2: Time cost of different attention blocks of
MagicDriveDiT during inference.

FVD ↓ mAP ↑ mIoU↑ Time cost 17f/233f ↓
MagicDriveDiT 111.58 17.10 21.92 211s/615 s
Ours (w/o Quant) 125.70 16.60 21.27 64 s/309 s
Ours 125.88 16.72 21.24 58 s/278 s

Table 3: Acceralerating the inference process of
MagicDriveDiT. 17f and 233f denote the frames
count of generated videos.

complete 3D models in a matter of seconds, meeting the demanding requirements of simulation and
other real-time applications without compromising on quality.

3 Experiments

3.1 Experimental Setup

Dataset. The training dataset is obtained from the nuScenes dataset [24]. It consists of 700 training
videos and 150 validation videos. For the 3D scene reconstruction model, we split the dataset into
20,000 short sequences for training.

Evaluation Metrics. For video-generation stage, we evaluate both the realism and controllability in
street-view video generation. We adhere to the benchmarks from [25]. To measure video quality, we
use the Frechet Video Distance (FVD). Regarding controllability, we employ mAP from 3D object
detection and mIoU from BEV segmentation. For 3D scene reconstruction stage, we adopt novel
view synthesis (NVS) to assess reconstruction quality, following the evaluation protocol established
in DrivingForward [11]. We report PSNR, SSIM, and LPIPS [26] in Table 1.

3.2 Main Results

As shown in Table 3, equiping MagicDriveDiT with TeaCache for condition branch has a speedup of
nearly three times and two times for 17 frames and 233 frames. The percption metrics, mAP and
mIoU only shows slight decrease. Table 2 shows that cross-view attention is identified as the most
computationally costly process in MagicDriveDiT.

Table 1 provides a comprehensive comparison of DriveGen3D against both optimization-based
dynamic methods and feed-forward reconstruction methods. Notably, when using generated images
instead of ground truth, DriveGen3D maintains competitive reconstruction quality with a PSNR of
22.84 and achieves the highest SSIM of 0.811, demonstrating strong temporal coherence and structure
preservation in generated scenes. This suggests that despite operating on synthetic inputs, Drive-
Gen3D produces reliable and structurally consistent 3D reconstructions, validating the effectiveness
of its end-to-end pipeline

4 Conclusion

We present DriveGen3D, an efficient framework for synthesizing high-resolution, long-duration
driving videos from textual descriptions and BEV layouts, and generating high-quality large-scale
dynamic scenes. Our approach marks a significant advancement in world modeling by bypassing
conventional voxel-based generation paradigms [27] through a novel integration of longitudinal video
generation and scene reconstruction modules. This architecture enables faithful reproduction of
real-world driving scenarios and thus paves the way for novel applications in autonomous vehicle
simulation and dynamic world modeling.
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A Implementation Details

We train the model with a resolution of 424× 800. We inference the model on NVIDIA H20 GPUs.
When assessing the time cost of our proposed method, the baselines for the video generation model
are MagicDriveDiT (17f) and MagicDriveDiT (233f). The 3D scene reconstruction stage is trained
on NVIDIA H20 GPUs for 2 days.

B More Experiments

Diffusion steps acceraleration. Firstly, we visualize the input differences and output differences in
consecutive timesteps in Figure B. It is observed that the default configurations of TeaCache, i.e. ALL,
exhibits a U-shape for model output, with downward tend initially, nearly constant for the middle
and upward until the end. The same is for the uncondition branch. The condition branch exhibits a
slightly different phenomenon, with the start of model output much smaller. We also apply simple
polynomial fitting to fit a relationship between model input and output and the use these cofficients to
predict model output according to the input. As shown in the black lines in Figure B, the quality of
fitting is best for the condition branch, while ALL and uncondition do not fit well for the start. We
attribute this to the different input and output relationships in the start of diffusion process. So we
finally only apply TeaCache to the condition branch of MagicDriveDiT.

Quantized DiT. Secondly, we profile the time cost of MagicDriveDiT. As shown in Table 2, cross-
view attention is identified as the most computationally costly process in MagicDriveDiT. We further
analyze different attention components in MagicDriveDiT and plot the distribution of Q,K, V , as
depicted in Figure A. Notably, Q and K exhibit a trend similar to that in Figure 4 of SageAttention2.
An interesting phenomenon is observed: the numeric range of V follows the order: spatial > temporal
> cross-view. Specifically, the cross-view range is 10 times smaller than the spatial range and 5
times smaller than the temporal range. Given the principle of quantization, a smaller range is more
conducive to quantization. Therefore, a promising solution is not only to apply SageAttention to
cross-view attention but also substitute the high-precision quantization method for V with a lower-
resolution one. Concretely, for V , the FP8, E4M3 data type can be replaced with FP8, E5M2 data
type and INT8. We leave the latter for future attempt. In this paper, applying sageattention to the
transformer blocks saves an additional 30 seconds (233 frames) of inference time after diffusion steps
acceraleration while maintaining performance.

Visualization. In Figure C, we compare the generated videos of baseline model, baseline model
with diffusion steps acceraleration and further quantization with SageAttention. With the proposed
techniques, no obvious change is observed. It can still generate video longer than 15 s with a much
faster speed. This highlights the efficiency of DriveGen3D.

Full pipeline results. In Figure D, we show a typical output result of DriveGen3D. DriveGen3D can
generate and reconstruct videos for more than 20S, 12FPS.

C Related Work

C.1 Video generation for driving scene

Recent advancements in street view generation and autonomous driving scene synthesis have sig-
nificantly improved the fidelity and controllability of synthetic data. MagicDrive [1] introduces a
framework for street view generation with diverse 3D geometry controls, such as camera poses and 3D
bounding boxes, enhancing tasks like BEV segmentation and 3D object detection through cross-view
consistency. MagicDriveDiT [2] extends this by addressing high-resolution, long video generation
for autonomous driving, leveraging flow matching and spatial-temporal conditional encoding to
achieve superior scalability and control. InfiniCube [27] focuses on unbounded dynamic 3D driving
scene generation, combining scalable 3D representations with video models to ensure geometric
and appearance consistency across large-scale scenes. DrivingDiffusion [3] synthesizes multi-view
driving videos with precise layout control, ensuring cross-view and cross-frame consistency through
a spatial-temporal diffusion framework. UniScene [28] unifies the generation of semantic occupancy,
video, and LiDAR data, employing a progressive generation process to reduce complexity and im-
prove downstream task performance. DriveDreamer [4] pioneers real-world-driven world models,
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Figure A: Typical examples of tensors’ data distribution in different attention blocks of Magic-
DriveDiT.

Figure B: Visualization of input and output differences across consecutive timesteps. We separately
plot the all, conditioned, and unconditioned components.

using diffusion models to capture complex driving environments and enhance driving video genera-
tion and action prediction. Panacea [29] integrates a novel 3D attention and a two-stage generation
pipeline to maintain coherence, supplemented by the ControlNet framework for meticulous control by
the Bird’s-Eye-View (BEV) layouts. DriveDreamer-2 [5] integrates LLMs to generate user-defined
driving videos, improving temporal and spatial coherence while surpassing state-of-the-art methods
in video quality metrics like FID and FVD. Together, these works advance the field of autonomous
driving by providing scalable, controllable, and high-fidelity synthetic data generation frameworks.

C.2 Reconstruction for driving scene

The reconstruction of dynamic driving scenes [8, 17, 30, 31, 3, 32–36] has emerged as a critical task in
autonomous systems and immersive environment modeling. Contemporary approaches predominantly
leverage Gaussian splatting-based representations due to their inherent balance between rendering
efficiency and geometric expressiveness. Early methodologies in this domain adopted optimization-
based paradigms, exemplified by works such as StreetGaussian [8], DrivingGaussian [10], and
HUGS [9]. These frameworks optimize scene representations per instance for specific street segments
(typically under 100 meters in scale) through iterative refinement processes spanning approximately
30 minutes.
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Figure C: Comparison of video generation for MagicDriveDiT, Diffusion steps acceleration and
Quantized DiT.

Recent advancements have shifted toward feed-forward architectures [18–20, 37–46] to enable rapid
3D reconstruction. Methods like PixelSplat [18], MVSplat [19], and DepthSplat [20] employ large
pretrained networks to directly infer Gaussian parameters from multi-view inputs, reducing recon-
struction time from minutes to seconds. Though these approaches demonstrate generalizability across
scenes, they often sacrifice reconstruction fidelity in geometrically complex regions or under sparse
observational constraints. Parallel innovations address the temporal dimension of driving scenes:
InfiniCube [27] extends the Scube [47] framework to 3D street generation, disentangling dynamic
vehicles from static backgrounds via hybrid voxel-video control mechanisms. Drive3R [13] adapts
the Spann3R [37] architecture for per-frame 3D scene reconstruction through temporal consistency
priors. DrivingRecon [12] mimics StreetGaussians’ pipeline but replaces iterative optimization with
feed-forward prediction, achieving real-time capability at moderate resolutions. DrivingForward [11]
enhances sparse-view reconstruction robustness by jointly learning pose estimation and depth pre-
diction modules within its network architecture. These advancements collectively highlight two
persistent limitations: 1) Existing feed-forward 3D reconstruction methods operate at constrained
spatial resolutions (typically ≤ 512 × 512). 2) Prior works on generative models for conditional
scene synthesis required substantial computational resources and complex framework integration,
which hindered their widespread adoption.
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Figure D: Visualization of multiview reconstruction video.
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