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Abstract

Human action recognition models often rely on background cues, rather than
human movement and pose to make predictions, a behavior known as background
bias. In this paper, we present a systematic analysis of background bias across
classification models, Vision-Language models, and Large Language Models and
find that all exhibit a strong tendency to default to background reasoning, though
LLMs show relatively reduced reliance on background compared to the other
two. Next, we propose background bias mitigation strategies for classification
models and show that incorporating additional segmented human input effectively
decreases background bias. Finally, we explore both manual and automated prompt
tuning for large language models, demonstrating that prompt design can steer
predictions towards human-focused reasoning.

1 Introduction

Human action recognition aims to identify what the human is doing in the video, but models often
rely on the background, rather than human to make predictions, a phenomenon known as background
bias [4}15]]. E.g., given a video of a person playing violin in a baseball field, the model may predict
“playing baseball” rather than “playing violin” because of the background. This bias arises because
datasets often contain consistent correlations between actions and backgrounds (e.g., skiing always
occurs on snow), leading models to leverage backgrounds as shortcuts for the action [9].

Despite the growing popularity of Vision-Language models like CLIP [14]], SigLIP2 [16], and multi-
modal large language models [2, |12} 23]], background bias in these model paradigms has not been
extensively studied. Prior research [4} 15, 11 |17] has mainly focused on classification models. Some
works have examined background bias in CLIP and video LLMs. [7, [18} [21]] primarily focus on
object classification rather than action recognition, employ simplistic removal-based strategies, and
lack a systematic comparison of background bias across model paradigms. While MASH-VLM
[[L] does a great job analyzing scene bias, their work mostly tests on scene-only videos, making it
hard to quantify how much models rely on human versus background context. Our work fills the
gap by performing a comprehensive analysis of background bias across model paradigms while also
developing architectural and prompting-based mitigation strategies.

The main contributions are:
(1) We analyze background bias across model paradigms including CLIP, SigLIP2, and LLMs. We
find that all models display background bias, while LLMs rely less on background cues.
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Table 1: Results of models on background bias benchmarks (left) and CLIP class-level analysis
on HAT Action Swap (right). Left: all models show background bias, though LLMs rely less on
background cues. Right: high bias arises when backgrounds are distinctive and consistently paired
with actions.

High Bias (highest SBErr)

Background Class SHAcc  SBErr
Model SHAcct SBEm| Mimetics presenting weather forecast 3.64  89.09
All classes decorating the christmas tree 462 7538
Slow-Only [6] 11.71 26.24 6.31 cutting pineapple 0.00 70.37
CLIP ViT-B/32 [14] 4.32 15.07 5.75 ice skating 0.00 69.39
SigLIP2 [16] 4.06 20.01  4.63 cleaning toilet 0.00  68.09
As 5-choice MCQ_ Low Bias (lowest SBErr)
Slow-Only [6] 35.81 55.41 57.64
CLIP ViT-B/32 [T4]  29.25 53.66  46.84 Background Class SHAcc  SBErr
SigLIP2 [16] 25.46 58.91 48.95 dancing ballet 10.87 0.00
InternVL3-8B [23]  40.29 48.84 62.83 playing clarinet 10.91 0.00
InternVL3-78B [23] 45.73 48.39 66.61 washing feet 10.91 0.00

waxing chest 14.81 0.00

laughing 15.52 0.00

(2) We propose strategies to mitigate background bias in classification models, finding that incorpo-
rating segmented human inputs reduces background bias.

(3) We demonstrate that prompt engineering can effectively steer LLMs toward human-focused
reasoning, with automated prompt tuning emerging as a particularly promising approach.

2 Dataset and Metrics

To measure background bias in a model, we use HAT Action Swap, introduced in [, which contains
videos where the human from class A is placed on a mismatched background of class B (e.g., eating
ice cream on basketball court). We report Swap Human Accuracy (SHAcc) and Swap Background
Error (SBErr). SHACcc is the fraction of videos where the model correctly predicted the human class
(A), and SBEtr is the fraction incorrectly predicted as the background class (B). A high SHAcc
indicates more reliance on human features, while a high SBErr shows reliance on background. We
also evaluate on Mimetics [[19], which contains mimed actions without matching scene context, and
Kinetics [3], a human action video dataset. We report accuracy for Mimetics and Kinetics.

3 Analysis of Background Bias

3.1 Vision-Language Models

We analyzed background bias in CLIP ViT-B/32 [14] and SigL.IP2 [16] models, both contrastive
image-text models known to perform well on a wide range of visual understanding tasks without
task-specific training. We tested on the three “Random” Action-Swap mixes from HAT [5]], which
are generated from the Kinetics-400 dataset, by feeding CLIP and SigLIP2 the center video frame.
The 400 action labels from Kinetics were used as text prompts. The action prediction was determined
based on which text embedding had the highest similarity score with the image embedding.

As shown in Table|l|(left), both CLIP and SigL.IP2 have a higher swap background error than swap
human accuracy, indicating that they are biased towards predicting the background. We further broke
down the results by background class label. Table|[T] (right) shows the background category and their
SHAcc and SBErr. For example, among all the videos which have “presenting weather forecast” as
the background, only 3.64% predicted the correct human label, while 89.09% predicted “presenting
weather forecast”. In general, high background bias tends to occur when the background is visually
distinctive and consistently paired with the action (e.g., christmas tree in decorating christmas tree,
toilet in cleaning toilet). In such cases, the model tends to over-rely on background cues, predicting
the background-associated action even when the person’s movements do not match. On the other
hand, low background bias tends to occur when the background is not distinctive for the action and
could appear in many different contexts. For example, “playing clarinet” could take place in a concert
hall, a living room, or outdoors, so there is no distinctive background cue that the model can rely on.
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Figure 1: (a) Effect of model size on InternVL3. As model capacity increases, SHAcc improves,
but SBErr persists. (b) Effect of number of frames on InternVL3. SHAcc increases, while SBErr
decreases, showing temporal information helps. (¢) Performance of GPT-40-mini prompts on HAT
Action Swap. Automated prompt tuning achieves higher accuracy and better reduces background
bias.

Table 2: Result for Classification Model Mitigation Solutions. Change from Slow-Only baseline is
shown in parenthesis.

Model Kinetics-50 Acct HAT SHAcc 1t HAT SBErr] Mimetics Acc 1
Slow-Only 49.93 9.62 23.42 6.87
Segmented 23.46(_26447) 23.34(“3.72) 2.09(_2]433) 9-54(+2,67)
Dual-Branch Sum 52.1 5(+2.22) 1 2.76(+34|4) 20.36(_340(,) 7.85“()493)
Dual-Branch Stack  51.51 41 s5) 12.80(:3.18) 19.80(:3.62) 8.28(41.41)
Weighted—Focus 52.03“2.10) 12.8O(+34|g) 19.64(_3473) 7.85“()493)

3.2 Large Language Models

We conducted experiments on InternVL3 [23], a recent multimodal language model capable of
inputting videos to investigate whether LLMs also exhibit background bias in action recognition. The
task was framed as a multiple-choice question. We first prompted the LLM with the prompt: “What
is the action being performed?” and then provided it with five answer choices. The choices included
the human action label, background action label, and three randomly selected action classes from the
remaining Kinetics-400 classes. To study performance trends, we varied (1) the number of frames
(sampled evenly throughout the video) that we feed to the model and (2) the model size within the
InternVL3 family.

As shown in Figure [Ta] as the model size increases, the SHAcc improves. However, the Swap
Background Error in HAT Action-Swap persists. This suggests that larger model capacity alone is
insufficient for robust human action understanding. Figure[Tb|shows that as we give more frames, the
SHAcc increases, while the SBErr decreases. This trend shows that temporal information helps the
model focus more on the human motion than the background context.

Table [T] (left) tabulates the results of different models on background bias benchmarks. Overall,
LLMs display less background bias than both classification model (Slow-Only) and Vision-Language
models (CLIP and SigLIP2).

4 Mitigating Background Bias

In this section, we explore solutions to mitigate background bias in classification models and LLMs.
For this section, instead of using Kinetics-400, we constructed Kinetics-50 using the 50 classes from
Mimetics, and similarly, we construct mini HAT Action Swap, which uses the same 50 classes.



4.1 Classification Models

As a baseline model, we used the Slow-Only (R50 backbone) model [6], which shows strong
background bias as it can be seen from the first row of Table[2] To mitigate this background bias, we
propose four strategies that either restrict the model’s access to background information or rebalance
the contribution of human and background features. Details are available in the appendix.

Segmented Input We remove the background and only put human segmented-video [10} [15] as input.
Dual-Branch: Sum and Stack Original video and segmented videos are fed to different Slow-Only,
where they are fused in the middle via (1) element-wise addition or (2) channel concatenation.
Weighted Focus We allow the model to adaptively control human vs. background weighting.

Figure 2: Examples showing original HAT Action Swap frame, binary mask, and final human
segmentation. Human and Background classes of the images are: (Row 1) reading book on catching
or throwing baseball, (Row 2) playing trumpet on hitting baseball, (Row 3) playing saxophone on
juggling balls, (Row 4) opening bottle on cleaning windows.

Mask Segmented

Original HAT Action Swap

Figure 2] shows visual examples of action swap images, binary mask, and human segmentation. As
shown in Table [2] (second row), feeding just the human alone leads to significant improvements
in background bias, seen through the improvements in HAT SHAcc, HAT SBErr, and Mimetics.
However, it suffers a large drop in Kinetics-50 performance, due to the lack of useful contextual cues,
hinting that the background is still an important cue for action understanding. Dual-Branch Sum/Stack
and Weighted Focus improve accuracy on Kinetics-50 while also lowering SBErr, increasing SHAcc,
and increasing Mimetics accuracy. This shows that incorporating an additional segmented input can
effectively improve performance and reduce background bias. These findings highlight an important



tradeoff: removing background reduces bias, but hurts accuracy when on datasets where action and
background are strongly correlated, since useful context is lost. In contrast, retaining background
preserves accuracy on such datasets but increases bias. Dual-Branch Sum/Stack and Weighted-Focus
achieve an effective balance, improving Kinetics-50 accuracy while reducing background bias.

Additionally, we tried augmenting the training data where the background is replaced with an
unrelated scene. Augmented data significantly improves performance on HAT Action-Swap, but with
some sacrifice to the original Kinetics performance. Details of this is in the appendix.

4.2 Large Language Models

In this section, we explore prompt tuning as a strategy to mitigate background bias in LLMs. We
used GPT-40 Mini [[13]], since it has strong general understanding of language, which would make it
well-suited for evaluating different prompts. Evaluation is done on 75% of HAT Action Swap, and
remaining 25% is used for automated prompt tuning.

Hand-Crafted Prompt Tuning We first tested hand-crafted prompts with varying levels of guid-
ance. The prompts were as follows:

Neutral baseline - "What is the action being performed?" followed by five action labels.
Prefixed-choices - Same as neutral, but each choice is prefixed by "a video of a human. . ."
Human-focused - Instruct model to consider only the human while ignoring background.
Background-focused - Instruct model to consider only background while ignoring human.

As shown in Figure[Ic| prompting can steer background bias. Specifically, we see that Human-focused
prompts improves background bias upon the neutral prompt, while Background-focused worsens the
bias.

Automated Prompt Tuning We showed that manual prompt engineering can reduce background
bias to some extent. This raised the question: was this the limit of LLM performance, or simply a
limitation of our prompts? To investigate, we turned to automated prompt engineering [8} 20], which
systematically improves prompts through a feedback-driven loop using LLM. Figure [lc|summarizes
the performance of the four manually crafted prompts and the 20 automated prompts. While the
human-focused manual prompt modestly improved SHAcc and SBErr relative to baseline, automated
tuning consistently achieved larger gains, further increasing SHAcc and reducing SBErr. These
results highlight prompt tuning as a more effective background bias mitigation strategy than manual
prompt design.

5 Conclusion

In this study, we analyze background bias in action recognition across newer model paradigms -
Vision-Language Models and LLMs - and find that both exhibit background bias, but with LLM
showing the least amount of background bias. We then explore solutions for mitigating background
bias in action recognition classification models and find that models which integrate both the original
and segmented inputs improve performance on standard datasets like Kinetics and reduce background
bias on counterfactual benchmarks like HAT Action-Swap. Turning to large language models, we
show that they are sensitive to prompt wording and that background bias can be reduced through
carefully designed manual prompts or automated prompt tuning.
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A Technical Appendices and Supplementary Material

A.1 Construction of Kinetics-50 and mini HAT Action Swap

Kinetics-50 To construct the Kinetics 50 dataset, we began with the Kinetics-400 dataset [3] and
selected the 50 action classes (same 50 as Mimetics [[19]). For the training and validation data, we
split the original Kinetics-400 training set (filtered to include only those 50 classes) into 80% for
training and 20% for validation. For the testing data, we used the original Kinetics-400 validation set,
again filtered to include only the 50 selected classes. The final dataset consists of 24,668 training
videos, 6167 validation videos, and 2485 test videos.

Mini HAT Action Swap We use images from the HAT dataset introduced by [3]. They provide
pre-generated segmented human videos and inpainted background videos for the Kinetics classes. We
used the videos from same 50 classes as above to generate Action-Swap images, where a human figure
is combined with a mismatched background drawn from a different action class. This counterfactual
setup allowed us to evaluate whether models rely more on human appearance or scene context. The
total size of our mini HAT Action-Swap set was 2366 videos.

A.2 Classification Model Details

Segmented Input As the most straightforward solution, we remove the background entirely by
applying segmentation before feeding the video into Slow-Only [6]. This ensures the model sees
only the human and cannot rely on background cues. We first used YOLOVS5 [10] to extract object
bounding boxes and their confidence scores. From these, the highest-confidence bounding box labeled
with the “person” class was selected to be input for SAM2 [[15]. We then used SAM2 to propagate
the segmentation across all frames to extract consistent human segmentations throughout the video.
Non-human regions were set to 0.

Dual-Branch While segmented input reduces reliance on background cues, it also removes poten-
tially useful context. For example, if the model sees a person swimming, but no water, it may struggle
to distinguish between swimming and other similar movements. Therefore, we created a dual-branch
architecture that allows the model to learn dynamically from both human and background. The model
consists of two parallel streams: one receiving original video and the other receiving segmented
video (using same method as previous). Both inputs independently go through the initial layers of
Slow-Only (Stem, Stage 1, and Stage 2). After Stage 2, the two feature maps are fused using one of
two strategies: (1) Sum: element-wise channel addition, or (2) Stack: concatenation along the channel
dimension. The fused representation goes through the remaining layers of the Slow-Only backbone
(Stage 3, Stage 4, and Head). In the Stack method, Stage 3 is modified to accept the doubled channel
dimension resulting from concatenation. The intuition is that in the early layers, each branch learns
low-level features from its input, and after fused, it learns a joint representation integrating both
human-focused and contextual cues.

Weighted Focus This approach focuses on letting the model adaptively control weighting between
human and background. We introduce an auxiliary 3D CNN network that processes the early feature
maps of the Slow-Only model. It learns a scalar parameter «, which controls relative human-
background weighting. To apply this weighting, we use the binary segmentation mask M (where 1 =
human, 0 = background) and compute a weighted mask as follows:

Mweighted:(1+a)'M+(1_a)'(1_M) (1)

To ensure stability, « is constrained to [-1, 1] using sigmoid, meaning the human region can be scaled
up to 2x or down to 0x, with the background scaled in the opposite direction. The weighted mask
is then multiplied with the feature maps, and the modified features continue through the remaining
layers of Slow-Only.

A.3 Classification Model Training Details

All classification models are based on the Slow-only (R50 backbone) variant of the SlowFast model
[6]. We sampled 8 evenly spaced frames from each video and applied the same preprocessing
transformations as proposed in the original SlowFast paper, including resizing and center-cropping to
224x224.



Model Kinetics-50 1 Kinetics-50 (+aug) T SHAcc 1 SHAcc (+aug) T SBErr] SBEir (+aug) | Mimetics T Mimetics (+aug) T

Slow-Only [6 49.94 46.56 9.62 14.73 23.42 14.41 6.87 10.24
Segmented 23.46 23.26 23.34 21.89 2.09 2.17 9.54 9.82
Dual-Branch Sum  52.16 39.72 12.76 24.27 20.36 7.65 7.85 9.12
Dual-Branch Stack  51.51 42.98 12.80 23.18 19.80 8.57 8.27 10.94
Weighted Focus 52.03 23.86 12.76 22.54 19.64 1.85 7.85 10.10

Table 3: Results of Classification Models with and without training on Places365 Augmented data.
Adding augmented data drops performance on Kinetics-50, but improves performance on HAT Action
Swap and Mimetics.

Models were all trained from scratch on Kinetics-50. Models were trained using the Adam optimizer
with a starting learning rate of 0.001. We used a ReduceLROnPlateau scheduler with a patience of 40
epochs and a threshold of 1e-2 to adjust the learning rate dynamically based on validation loss. The
batch size was set to 20 for all training runs. All models were trained for 300 epochs.

A4 Augmented Data Experiment

We explored whether augmenting the training data could further improve performance of our classifi-
cation models. In addition to the Kinetics-50 videos used to train all previous models, we created our
own “action-swapped” videos - taking inspiration from the HAT Action-Swap set [3].

To construct these, we used YOLOVS [[10]] and SAM?2 [15] to extract human figures from each video
in the Kinetics-50 training set. We then pasted each onto a background randomly selected from
Places365 [22] - a large-scale dataset with 365 diverse scene categories. This allowed us to simulate
context-mismatched scenarios where the action and background don’t naturally align, challenging
the model to rely less on background cues and focus more on the human motion. Each video kept the
same background throughout, and we resized the background image to match the resolution of the
original video. This data augmentation doubled the size of the training data, so the total number of
training videos was 49,336 (= 24,668 x 2).

Adding augmented training data led to a trade-off in performance. As shown in Table 3] accuracy
on Kinetics-50 dropped for all models when we trained on augmented data. However, performance
improved on HAT Action Swap and Mimetics across all models. This suggests that the augmented
data helped the model become more robust to background bias and context-mismatched scenarios -
which are emphasized in HAT [5]] and Mimetics [[19]]. On the other hand, since Kinetics typically has
consistent background-action alignment, the original background cues may have been more helpful
for classification, which explains the performance drop.

A.5 Manual and Automated Prompts for LLM
Manual Prompts

* What is the action being performed? (same prompt for both neutral baseline and prefixed-
choices)

* Focus only on the person and their motion. Ignore the background, scene, or surround-
ings. Based on the person’s posture, appearance, and movement, what is the action being
performed?

* Please just look at the background and not the person. Based on the background scene, what
is the action being performed?

Automated Prompts and Performance

Our automated engineering approach is inspired by the method introduced in [8, [20]. We simulate a
back and forth conversation with GPT 4.1 [13]], where it acts as a prompt engineer, rather than us.
Below is how we simulated the conversation.

(1) We first instruct GPT to design a prompt to improve accuracy and reduce background bias. The
instructions are the same as in [8]], but adapted to suit our context - by replacing references to texture
and shape with background and human cues.

(2) GPT responds with a proposed prompt (starting with PROMPT:).

(3) We test that prompt on our dataset using GPT 4o0-mini and report back the human accuracy and
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background error.
(4) GPT uses that feedback to refine its prompt in the next round.

Below are the 20 generated automated prompts and performance. Best performing prompt is bolded.

Focus only on the person’s movements and actions. What activity is the person doing,
regardless of the background?
SHAcc: 40.24%, SBErr: 48.83%

Ignore the background. Based only on the person’s movements, what action are they
performing?
SHAcc: 45.27%, SBErr: 43.55%

Describe only the main action the person is doing, without considering the background or
location.
SHAcc: 40.26%, SBErr: 49.43%

Based solely on the person’s body movements, what action are they performing in this
video? Ignore the background.
SHAcc: 45.56%, SBErr: 43.38%

Ignore the setting. What is the person doing, based only on their actions and movements?
SHAcc: 46.07%, SBErr: 43.32%

Disregard the background. Identify the action the person is performing by observing their
movements only.
SHAcc: 45.91%, SBErr: 42.87%

Only consider the person’s actions and body movements. What activity are they doing,
without using any clues from the background?
SHAcc: 39.15%, SBErr: 48.37%

Focus only on the person’s motion and behavior. What action are they performing, ignoring
all background details?
SHAcc: 46.02%, SBErr: 41.55%

Watch the person’s movements and actions only. What are they doing, without using any
information from the background?
SHAcc: 40.26%, SBErr: 46.74%

Based only on the person’s physical actions, what activity are they performing? Do not use
any background information.
SHAcc: 39.55%, SBErr: 50.26%

Ignore everything except the person’s movements. What action are they performing?
SHAcc: 45.79%, SBErr: 43.78%

Looking only at the person’s actions, what are they doing in this video? Ignore the surround-
ings.
SHAcc: 40.35%, SBErr: 47.97%

Ignore the environment. What is the person doing, based only on their actions in the video?
SHAcc: 46.19%, SBErr: 43.55%

Focus only on the person’s movements in the video. What action are they performing,
without considering the background?
SHAcc: 40.53%, SBErr: 46.42%

Ignore where the video takes place. What action is the person doing, based only on
their movements?
SHAcc: 46.70%, SBErr: 41.55%

Disregard the location and background. What is the person doing, based only on their
actions?
SHAcc: 46.48%, SBErr: 42.75%

Without using any clues from the background or location, what action is the person perform-
ing in this video?
SHAcc: 40.15%, SBErr: 47.08%
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* Ignore the background and setting. What action is the person performing, based only on
their movements?
SHAcc: 45.99%, SBErr: 41.69%

* What is the person doing in this video, based only on their actions and not the background?
SHAcc: 39.73%, SBErr: 47.68%

* Describe the action the person is performing, using only their movements and ignoring the
background.
SHAcc: 40.72%, SBErr: 48.74%

A.6 Limitations

While we have shown background bias in both Vision-Language models and video-LL.Ms, we have
only tested on a handful of models and our results may not give the fuller picture of how other
models might behave. Similarly, our methods of mitigating background bias were only tested on
selected representable models, but we were not able to check if the conclusions hold true for different
classification models. Automatic prompt tuning, specifically using LLM as an optimizer, is an actively
researched area but still in its experimental stages. For example, while we have seen that some of
the prompts were yielding improved results, the improvements were not incremental, where the
following prompt is not always better than the previous prompt. While we have mainly used HAT as
our background bias benchmark, as the original authors stated, the dataset is synthetically generated
and might not follow real-world trends.
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