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Abstract

The rapid progress of image generative AI has blurred the boundary between
synthetic and real images, fueling an arms race between generators and discrimina-
tors. This paper investigates the conditions under which discriminators are most
disadvantaged in this competition. We analyze two key factors: data dimension-
ality and data complexity. While increased dimensionality often strengthens the
discriminator’s ability to detect subtle inconsistencies, complexity introduces a
more nuanced effect. Using Kolmogorov complexity as a measure of intrinsic
dataset structure, we show that both very simple and highly complex datasets
reduce the detectability of synthetic images; generators can learn simple datasets
almost perfectly, whereas extreme diversity masks imperfections. In contrast,
intermediate-complexity datasets create the most favorable conditions for detection,
as generators fail to fully capture the distribution and their errors remain visible.

1 Introduction

Over the past decade, generative AI has enabled highly realistic synthetic media, including deepfakes
[1]. These technologies blur the line between reality and fabrication, creating significant societal
challenges [2]. While these advances have opened new possibilities in art and design [3], they have
also introduced risks in disinformation, fraud, and media authenticity verification [4, 5]. Reports
show thousands of deepfake attacks annually, causing hundreds of millions in financial losses and
eroding public trust in digital media [6–10]. Despite growing awareness, unaided human observers
perform only slightly better than chance at distinguishing AI-generated images from real photographs
[11, 12]. Traditional verification systems struggle to detect AI-generated content highlighting the
urgent need for robust detection methods [13]. The ability to distinguish synthetic images from real
ones has therefore become increasingly important, both for security and for maintaining trust in
digital media.

This dynamic has evolved into an arms race between generators, which strive to produce indistin-
guishable samples, and discriminators, which attempt to detect fakes. Over time, both AI-generated
content and detection methods will improve, but the battle remains inherently asymmetric: if a
generator perfectly captures the data distribution, no discriminator can ever win. Thus, the generator
can always improve and approach a point where detection becomes impossible. Understanding the
limits of detection is crucial for developing reliable tools to safeguard digital content.

Existing benchmarks focus on selecting the best discriminator. Little is known about the conditions
under which discriminators are most disadvantaged, particularly when considering the full spectrum
from simple, structured datasets to highly diverse, complex ones. For example, simple datasets
include MNIST, which consists of centered grayscale digits with minimal variation, whereas complex
datasets include CIFAR-10, which contains small color images across ten classes with significant
variability in objects, backgrounds, and lighting. We quantify complexity in terms of Kolmogorov
complexity, which measures the inherent compressibility or structure of a dataset. This metric is
particularly relevant in the context of generative modeling and detection, as datasets that are highly
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compressible are easier for generators to reproduce and harder for discriminators to exploit, whereas
less compressible datasets introduce variability that challenges both sides. As dataset complexity
increases, the task becomes more challenging for both the generator and the discriminator. When
the task is very simple, the generator can achieve near-perfect modeling, leaving the discriminator
at a disadvantage. Conversely, if the dataset is extremely complex, neither the generator nor the
discriminator can fully capture the distribution, and the discriminator again struggles to reliably
detect fakes. In this sense, intermediate complexity presents a unique regime where the generator is
imperfect but the data is structured enough for the discriminator to identify inconsistencies.

By examining this spectrum from simple to complex datasets and low to high dimensionality, we aim
to map the conditions under which synthetic data are easiest and hardest to detect. Our contributions
are as follows:

1. Formal proof of the inherent challenge of detection: We show that distinguishing gener-
ated image content from real images is an unwinnable battle, establishing theoretical limits
for discriminators.

2. Impact of dataset complexity: We systematically analyze how the complexity of datasets,
measured through Kolmogorov complexity, affects the detectability of synthetic images.

3. Role of input resolution: We quantify how changes in image resolution influences the
ability of discriminators to detect synthetic images.

Our work serves both as a theoretical study, establishing formal limits on detectability, and as a
conceptual framework, mapping how dataset complexity and resolution shape discriminator perfor-
mance. Together, these perspectives reveal both the long term impossibility of perfect detection and
the practical regimes where it remains feasible.

2 Related Works

Over the past decade, image generation has advanced rapidly, evolving from Variational Autoencoders
(VAEs) [14] to Generative Adversarial Networks (GANs) [15], and more recently to diffusion models
[16]. These generative models progressively improve the realism of synthetic images, effectively
blurring the boundary between real and artificial content. This progress creates new challenges for
detection, as even humans struggle to distinguish AI-generated images from authentic ones, achieving
only around 62% accuracy [11, 17]. Such limitations motivate the development of automated methods
capable of reliably identifying synthetic media.

Early detection approaches focused on identifying artifacts inherent to generative models. These
artifacts include inconsistencies in pixel patterns, unnatural textures, irregular noise distributions,
and subtle distortions in geometry or lighting [18, 19]. As generative models have become more
sophisticated, deep learning classifiers have been increasingly applied to detect AI-generated images
[20, 21]. Hybrid forensic systems, combining deep learning with traditional forensic techniques, have
further improved detection effectiveness [22, 23]

Several novel methods emerge to address specific challenges in detection. DIRE utilizes reconstruc-
tion errors derived from diffusion model inversion to detect AI-generated images [24]. Similarly,
SSP shows that even a single, carefully selected image patch can suffice for accurate detection,
highlighting the presence of localized artifacts [25], and GANs have been found to generally have
identifying artifacts/fingerprints [26–28]. Recent research also explores leveraging multimodal large
language models, which provide visually grounded explanations for detection decisions and enhance
interpretability [29]. These advances collectively illustrate the rapid evolution of detection strategies,
reflecting the ongoing arms race between generative models and discriminators.

Benchmarking plays a crucial role in evaluating detector performance. Large-scale datasets such
as GenImage [30] and Chameleon [22] provide diverse evaluation scenarios across a wide range
of generative models, including Stable Diffusion [31], Midjourney [32], and BigGAN [33]. These
benchmarks assess not only detection accuracy but also robustness under real-world conditions, such
as low-resolution images, compression artifacts, and blurring. Analyses from GenImage indicate that
higher-resolution images reveal finer, more detectable artifacts, improving detection performance,
whereas low-resolution or compressed images present greater challenges [30].
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Figure 1: overview of the experimentation setup used in this project. We take multiple datasets
with different (Kolmogorov) complexities or resolutions, and independently train copies of the same
diffusion-based image generator and convolutional discriminator for the datasets. We then compare
the accuracies of the discriminators against differences in the dataset complexities.

Some studies focus on leveraging semantic information, such as the number of fingers on a hand
[34, 35]. At the same time, other work investigated how detectors designed and trained to detect
GAN-generated images fail to generalize to diffusion-generated images and how detectors fail when
images have been compressed [28, 36]. However, no work has investigated how dataset distribution
and the resulting complexity influence detector performance.

Kolmogorov complexity provides a framework to quantify intrinsic dataset complexity by measuring
the length of the shortest program capable of reproducing it [37]. For image datasets, low Kolmogorov
complexity corresponds to highly structured or repetitive content, which generators can learn easily,
producing nearly indistinguishable synthetic images [38].

While previous studies have focused on developing AI-generated image detectors and evaluating
them on large-scale benchmarks, none have explicitly analyzed the dynamics of the ongoing arms
race between generators and discriminators over time. In this work, we are the first to systematically
investigate how this long-term battle unfolds, identifying conditions under which detectors hold the
greatest advantage.

3 Methodology

We begin by formalizing the asymmetry of the detection problem. Let p(x) denote the true data
distribution and q(x) the distribution induced by a generator. As long as p ̸= q, there exists a
discriminator D with non-trivial accuracy in distinguishing real from synthetic samples. In the
limiting case where q(x) = p(x), however, the detection task becomes ill-posed: no discriminator
can do better than always guessing the more probable class.
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Proposition 1. Let a dataset consist of real and generated samples with priors πr and πf = 1− πr.
If the generator distribution q(x) equals the data distribution p(x) for all x, then every discriminator
has accuracy equal to max{πr, πf}.

Proof. Let p(x) and q(x) denote the densities of real and generated samples w.r.t. a common
dominating measure. The mixture (marginal) density is

m(x) = πrp(x) + πfq(x). (1)

Conditioned on X = x, the posterior probabilities of the two classes are

Pr(real | x) = πrp(x)

m(x)
, Pr(fake | x) = πfq(x)

m(x)
. (2)

The Bayes-optimal classifier chooses the class with larger posterior probability. Hence, the pointwise
probability of a correct decision given x is

max

{
πrp(x)

m(x)
,
πfq(x)

m(x)

}
. (3)

The overall Bayes-optimal accuracy is

Acc⋆ =

∫
X
max

{
πrp(x)

m(x)
,
πfq(x)

m(x)

}
m(x) dx =

∫
X
max{πrp(x), πfq(x)} dx. (4)

If q(x) = p(x) everywhere, then max{πrp(x), πfq(x)} = max{πr, πf} p(x), so

Acc⋆ = max{πr, πf}
∫
X
p(x) dx = max{πr, πf}. (5)

Thus, when q = p, the Bayes-optimal accuracy equals the prior of the more probable class, and no
discriminator can outperform this baseline.

This establishes the theoretical limit of detection and motivates our investigation of the practical
regimes where discriminators retain predictive power. In particular, we study how two dataset-
dependent factors shape discriminator performance: (i) dataset complexity and (ii) input dimension-
ality. We use Kolmogorov complexity K(D) as a conceptual measure of dataset complexity, and
approximate it empirically using lossless compression. Dimensionality, in contrast, refers to the raw
input dimension d (e.g. the number of pixels per image). While larger d expands the feature space in
which distributions p and q can be separated, it also increases the sample complexity required for
reliable discrimination. Our experiments thus explore the trade-off between these two factors across
a wide range of datasets.

3.1 Diffusion Model and Discriminator Training

For each dataset, a diffusion model is trained to generate synthetic samples. Synthetic subsets
are denoted as Dfake

train, Dfake
val , and Dfake

test , with sizes matched to the corresponding real subsets. The
discriminator is trained on Dreal

train ∪Dfake
train and validated on Dreal

val ∪Dfake
val , while evaluation is performed

on Dreal
test ∪Dfake

test . The setup is shown in Figure 1 and enables controlled comparisons of detection
performance across datasets that differ in both complexity and resolution.

We evaluate six discriminator configurations that differ in architecture and input representation. The
Base discriminator is a compact convolutional neural network with approximately 40,000 parameters.
The Big discriminator is a deeper variant with about 520,000 parameters, providing increased capacity
while maintaining architectural similarity to the base model.

Both the Base and Big discriminators are trained under two input modalities. In the Pixel setting,
and in the Fourier setting. In the latter, a two-dimensional Fast Fourier Transform (FFT) is applied,
and the log-magnitude spectrum of each channel is used as input. This results in four models:
Pixel-Base, Pixel-Big, Fourier-Base, and Fourier-Big.

In addition, we evaluate a pretrained discriminator based on ResNet-18 [39] pretrained on Ima-
geNet, comprising approximately 11M parameters. Two training regimes are considered. In the
Linear-ResNet setting, only the final classification layer is optimized while the ResNet backbone
remains frozen. In the Finetuned-Resnet setting, the entire network is updated end-to-end.
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3.2 Approximation of Dataset Complexity

Kolmogorov complexity is not computable due to the undecidability of the halting problem[40], but
compression-based methods provide a tractable and meaningful approximation [37]. Modern lossless
compressors exploit redundancies and regularities in the data, yielding an effective upper bound on
true Kolmogorov complexity [41]. Datasets that compress strongly exhibit high internal structure,
whereas datasets that compress poorly contain greater variability.

We quantify the Complexity of a dataset D using its Compression Ratio:

C(D) =
Scomp(D)

Sorig(D)
, (6)

where Sorig(D) is the size of the dataset in bytes (raw NumPy representation) and Scomp(D) is the
size after compression. All images are concatenated into a single PNG file prior to compression to
maximize exploitation of spatial redundancies [42]. This compressed size then serves as a practical
proxy for Kolmogorov complexity [41].

Choice of compressor. While several compression algorithms could be employed, we adopt PNG
[42] as our primary measure due to its widespread use and high optimization. For robustness,
we also computed dataset complexity using zip, bzip2, zstd, and NumPy’s npz (Table 3). The
relative ranking of datasets remained highly consistent across methods (Spearman ρ ≈ 0.80–0.95),
confirming that PNG compression serves as a reliable proxy for dataset complexity.

4 Experiments

We evaluate the detectability of AI-generated images along two primary axes: dataset complexity
and image resolution. For the complexity experiments, all datasets are zero-padded or resized to a
common resolution of 32× 32 pixels. For the resolution experiments, we vary the input resolution
using the OrganAMNIST dataset [43, 44] as a case study. To capture a broad spectrum of dataset
complexity, we consider 19 datasets drawn from diverse distributions. The complete list of datasets is
provided in Table 2.

To ensure comparability across datasets, a consistent preprocessing and compression pipeline is
applied to all datasets used for complexity evaluation. Diffusion models are trained for each dataset
using a standardized configuration appropriate for 32 × 32 resolution. Apart from controlled ex-
perimental variations such as image size or dataset, architecture depth and channel width are kept
constant across training runs. We employ a conditional U-Net backbone trained with the standard
DDPM (Denoising Diffusion Probabilistic Model) formulation [16]. The U-Net consists of 3 levels
of encoder–decoder with symmetric skip connections and self-attention blocks at multiple resolutions
to capture both local and global dependencies. The base channel width is 128 and doubles after each
level.

Each dataset is split into training (Dreal
train), validation (Dreal

val ), and test (Dreal
test ) subsets. When predefined

validation and test splits with reasonable sizes are available, they are preserved. Otherwise, all
available images are pooled and randomly partitioned. Validation and test sets each contain either
10,000 images or one eighth of the total dataset size, whichever is smaller, with the remainder used
for training. For datasets with limited sample counts, standard data augmentations such as horizontal
and vertical flips are applied to increase effective sample size.

For each dataset, a diffusion model is trained to produce synthetic samples, resulting in Dfake
train, Dfake

val ,
and Dfake

test splits that mirror the sizes of their real counterparts. Discriminators are trained using
Dreal

train∪Dfake
train, validated on Dreal

val ∪Dfake
val , and evaluated on Dreal

test ∪Dfake
test . This setup enables a controlled

comparison of detection performance across datasets of varying complexity and dimensionality.

Each of the six discriminator variants (see Section 3) is trained and evaluated independently. For
each variant, experiments are repeated five times with different random seeds, and the mean detection
performance is reported.
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Figure 2: Discriminator accuracy across dataset complexity. Top: Overview across all datasets and
models, gray points indicate grayscale images and tri-color points indicate RGB images. Medium-
complexity datasets are easiest to detect, while simple datasets are nearly perfectly reproduced, and
complex datasets mask generator errors. Bottom: Model-specific performance breakdown. Overall,
increasing model capacity improves performance, particularly on high-complexity datasets. Fourier
preprocessing boosts detection for RGB datasets, while fine-tuning ResNets achieves near-perfect
accuracy across most datasets. Diminishing returns are observed when combining large models with
Fourier preprocessing, and low-resolution grayscale datasets benefit less from these enhancements.

5 Results

5.1 Results Across Dataset Complexity

Figure 2 (top) summarizes the relationship between dataset complexity and discriminator accuracy.
Detailed results for each dataset are reported in Table 1. The figure shows average performance
across all discriminator architectures.

At low complexity, the generator can capture the distribution almost perfectly, making very few
mistakes, and the discriminator has a hard task. At high complexity, the data distribution is wide,
and the discriminator cannot reliably distinguish mistakes from genuine variability. At medium
complexity, the discriminator excels: the generator struggles to learn the distribution, producing
systematic errors, while the dataset’s diversity is limited enough that these errors are clearly detectable.
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Figure 3: Classification accuracy comparison across different model architectures on the OrganAM-
NIST dataset. Results show performance scaling with image resolution from 32×32 to 128×128
pixels. Fine-tuned ResNet consistently achieves the highest accuracy across all resolutions.

5.2 Discriminator Capacity

Figure 2 (bottom) summarizes discriminator performance across datasets of varying complexity. Per-
dataset results are given in Table 1. All models struggle on low-complexity datasets, where generators
closely match the real distribution. Accuracy improves on intermediate-complexity datasets, where
imperfections are more visible. For high-complexity datasets, smaller models decline, while larger
ones retain accuracy by capturing subtler inconsistencies.

Increasing model capacity consistently improves performance. Transitioning from Base to Big CNNs
boosts accuracy, particularly in high-complexity regimes. Fourier preprocessing stabilizes training
and enhances detection for RGB datasets, as artifacts are spread in the frequency domain. However,
combining Fourier transforms with larger CNNs yields only marginal additional improvement,
suggesting diminishing returns when both capacity and preprocessing are maximized. For low-
resolution grayscale datasets, Fourier preprocessing offers minimal benefit.

ResNet discriminators follow similar trends. Pretrained ResNets with linear projection perform
well on intermediate datasets but struggle on the simplest and most complex ones. Fine-tuning boosts
accuracy across most datasets, with more errors on low-complexity and fewer on complex datasets,
showing generators still make detectable mistakes. These results show that model capacity is key
for complex datasets. As complexity rises, discriminators need more expressive architectures, but
practical constraints in large-scale applications emphasize the need for efficient, high-capacity models.
In practical applications, such as content moderation at scale, computational constraints limit the
extent to which discriminators can be enlarged, highlighting the need for efficient yet high-capacity
models.

5.3 Results Across Dataset Resolution

For the multi-resolution experiment, we used the OrganAMNIST dataset and evaluated diffusion-
generated images at three resolutions: 32×32, 64×64 and 128×128 pixels. At 32×32, discriminator
accuracy is comparatively low across most architectures, suggesting that low-resolution generations
obscure many artifacts and are therefore harder to classify as fake. The fine-tuned ResNet, however,
already achieves relatively strong performance at this resolution and continues to improve as resolution
increases. At 64 × 64, performance improves slightly across models, indicating that increased
resolution exposes additional cues for detection. At 128×128, all models achieve very high accuracy,
showing that higher resolutions amplify detectable differences from real data, likely due to high-
frequency artifacts introduced by the generator. These results are consistent with previous studies
showing that higher resolution makes it easier to detect synthetic images [30].

This highlights a key dynamic in the generator-discriminator arms race: the generator’s struggle to
maintain high fidelity at larger scales, evidenced by the rising FID score (Figure 4), provides a clearer
signal for detectors. The high-frequency artifacts that degrade the generator’s performance appear to
be the very same cues that enable discriminators to achieve near-perfect accuracy at high resolution.
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64× 64 24.08
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Figure 4: Real and generated images across datasets of varying complexity. Each column shows
a dataset, with real images on top and generated images on the bottom. The bottom-right table
reports FID scores across resolutions. Generated images closely follow the real distributions, but FID
increases with resolution, indicating that the diffusion model struggles to capture fine details.

5.4 Evaluation of the Diffusion Model

Diffusion models are a leading approach for image generation due to their ability to capture complex
data distributions and produce high-quality samples. We evaluate the model qualitatively and
quantitatively across datasets of varying complexity and resolution.

Image quality across dataset complexity. Figure 4 shows real images on top and generated images
on the bottom for each dataset. For simpler datasets such as FashionMNIST or KMNIST, generated
samples are nearly indistinguishable from real images, reflecting low Real-AI FID values (see Table 4).
In contrast, for more complex datasets like CIFAR-100, SVHN, or EuroSAT, subtle imperfections
remain visible, corresponding to higher Real-AI FID scores. These trends indicate that image quality
decreases with increasing dataset complexity and help explain why discriminators perform better on
more complex datasets, as subtle artifacts are easier to detect.

Image quality across resolution. For OrganAMNIST, the model achieves strong fidelity at lower
resolutions (see Figure 4, with performance gradually decreasing as resolution increases. Overall,
the diffusion model generates realistic and diverse samples for simpler datasets. These results align
with the discriminator performance shown in Section 5.3 and Figure 3; as resolution increases,
discriminators become more effective at detecting fake samples.
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6 Limitations and Future Work

Despite our study’s insights, several limitations suggest directions for future work. The analysis is
limited by the choice of generative model, including architecture and hyperparameters. Diffusion
model performance can vary with factors such as latent diffusion variants, number of diffusion
steps, noise schedules, and other training settings, affecting image quality and artifact types. Results
may differ for other generative architectures or parameter configurations. Extending the analysis
to text-to-image models is also promising, as prompts introduce additional complexity that could
influence discriminator performance. Finally, complexity was measured at a fixed resolution of
32× 32 pixels, yet both dataset complexity and generative performance can scale with resolution,
warranting further exploration.

Our study captures only a snapshot and does not consider the historical evolution of the generator-
discriminator arms race. Studying past improvements could provide context for current detection
challenges and reveal trends in model development. Also, human perception was not incorporated in
the evaluation. Humans often serve as effective detectors of AI-generated content, so benchmarking
against human performance could offer complementary insights.

The measure of dataset complexity relies on standard PNG compression, which may not fully capture
the intrinsic diversity of the data. For example, a dataset of random noise could appear highly complex
under this metric, even though a learned compression model could efficiently encode it. Employing
learned compression schemes tailored to each dataset could provide a more accurate assessment of
structural complexity.

Together, these limitations highlight both methodological constraints and opportunities for future
research, including exploring higher-resolution images, alternative generative models, temporal
dynamics, human-centered evaluations, and improved complexity metrics. Addressing these aspects
would deepen our understanding of the conditions under which AI-generated content is most and
least detectable.

7 Conclusions

Our study highlights the interplay between AI-generated image detectability, dataset complexity,
data resolution, and discriminator capacity. Diffusion models are highly effective at learning simple
datasets, producing images that closely match the real distribution. As dataset complexity increases,
these models begin to make systematic errors, which discriminators can exploit to distinguish real
from generated content. However, when datasets are extremely complex, even discriminators struggle
to reliably detect fakes, as the diversity and variability in the data mask generator imperfections.

Increasing data dimensionality, such as higher-resolution images, provides the discriminator with
more features and subtle cues, improving detection accuracy. Larger discriminators further enhance
performance, particularly in high-complexity regimes. A key aspect we have only begun to explore
is the synergistic effect of both complexity and resolution on detectability. As generators become
more capable of producing high-resolution, complex images, the nature of the detectable artifacts
may shift from global inconsistencies to subtle, high-frequency errors. This suggests that the "sweet
spot" of intermediate complexity for detection may itself be resolution-dependent, a fascinating
phenomenon that presents a rich and promising direction for further investigation to truly understand
the boundaries of AI-generated content detection.

Looking forward, the rapid evolution of AI-generated content, including high-resolution images,
text-to-image models, and multimodal media, presents both opportunities and challenges. Generators
will continue to produce increasingly realistic content, while discriminators must adapt to maintain
reliable detection. However, given the asymmetric nature of this arms race, it is likely that this battle
will eventually be lost: as generative models approach perfect emulation of real data distributions,
discriminators will be fundamentally limited in their ability to detect fakes. Understanding the limits
of detection and the factors that influence it remains essential for building robust systems to safeguard
digital media, mitigate misinformation, and preserve trust in online content. Our work provides a
foundation for future research in this evolving landscape, guiding the development of both generative
and discriminative AI in a responsible and informed manner.
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8 Appendix

8.1 Extended Results

Table 1 provides a comprehensive overview of classification accuracy across all datasets and discrimi-
nator architectures. The datasets span a wide range of intrinsic complexity, from simple digit datasets
such as MNIST and KMNIST, to moderately complex datasets such as OCTMNIST and SVHN, to
highly diverse datasets including CIFAR-10, PathMNIST, and Food101. The complexity column
quantitatively reflects the structural richness and variability of each dataset, providing context for the
observed performance trends.

Table 1: Classification accuracy comparison across different models and datasets. The complexity
column provides a quantitative measure of each dataset’s structural richness and variability. Average
accuracy across all models is also included for comparison. Fine-tuned ResNet consistently achieves
the highest accuracy across datasets, demonstrating the importance of model capacity for handling
complex and diverse image data.

Dataset Complexity Average Pixel-Base Pixel-Big Fourier-Base Fourier-Big Linear-ResNet Finetuned-ResNet

MNIST[45] 0.163 81.7 80.3 ± 2.7 85.1 ± 4.9 72.2 ± 0.6 77.4 ± 0.6 79.0 ± 0.1 96.0 ± 3.9
EMNIST[46] 0.284 82.1 83.2 ± 1.0 86.0 ± 11.0 67.4 ± 0.8 72.3 ± 1.6 85.2 ± 0.1 98.7 ± 1.3
KMNIST[47] 0.301 80.5 79.9 ± 0.4 86.0 ± 1.1 67.8 ± 0.7 73.9 ± 1.4 81.4 ± 0.2 93.8 ± 3.8
FashionMNIST[48] 0.395 76.3 72.6 ± 1.2 80.1 ± 3.1 63.6 ± 0.3 66.0 ± 0.5 80.9 ± 0.1 94.8 ± 4.4
OCTMNIST[43, 44] 0.504 94.8 94.5 ± 2.9 94.6 ± 10.4 90.8 ± 0.4 93.4 ± 0.4 95.6 ± 0.1 99.8 ± 0.0
SVHN[49] 0.530 98.0 92.7 ± 7.1 99.7 ± 0.1 100.0 ± 0.0 100.0 ± 0.0 95.7 ± 0.1 100.0 ± 0.0
Eurosat-AUG[50] 0.537 98.5 97.2 ± 4.5 99.8 ± 0.2 100.0 ± 0.0 100.0 ± 0.0 93.9 ± 0.1 100.0 ± 0.0
DermaMNIST-AUG[43, 44] 0.538 98.8 99.5 ± 0.3 99.6 ± 0.3 99.9 ± 0.0 100.0 ± 0.0 93.7 ± 0.2 100.0 ± 0.0
BloodMNIST-AUG[43, 44] 0.616 97.5 88.0 ± 5.7 99.5 ± 0.7 99.8 ± 0.0 100.0 ± 0.0 97.6 ± 0.0 100.0 ± 0.0
GTSRB[51] 0.619 90.7 67.7 ± 0.6 96.2 ± 2.5 96.7 ± 0.2 97.7 ± 0.1 86.0 ± 0.2 100.0 ± 0.0
ChestMNIST[43, 44] 0.628 93.6 92.1 ± 5.6 98.4 ± 0.6 89.1 ± 0.6 91.1 ± 0.3 90.7 ± 0.1 99.9 ± 0.0
Country211[47] 0.681 87.6 60.2 ± 3.0 91.6 ± 3.2 93.7 ± 0.3 95.7 ± 0.1 84.7 ± 0.2 99.8 ± 0.0
CIFAR-100[52] 0.695 88.7 58.9 ± 1.1 96.3 ± 1.3 98.2 ± 0.1 98.7 ± 0.0 80.6 ± 0.3 99.9 ± 0.0
Fer-2013-AUG[53] 0.696 85.4 77.8 ± 5.2 93.8 ± 1.3 77.9 ± 0.2 79.5 ± 0.5 84.4 ± 0.3 99.2 ± 0.1
CIFAR-10[52] 0.701 89.1 57.7 ± 1.5 97.7 ± 0.6 98.5 ± 0.2 99.1 ± 0.1 81.5 ± 0.3 99.9 ± 0.0
PathMNIST[43, 44] 0.703 90.7 70.1 ± 0.6 95.9 ± 2.3 98.4 ± 0.1 99.3 ± 0.1 80.6 ± 0.1 99.8 ± 0.1
OrganAMNIST[43, 44] 0.719 80.4 72.1 ± 1.5 87.4 ± 4.2 75.0 ± 0.4 76.8 ± 0.3 74.1 ± 0.1 96.8 ± 1.1
Food101[54] 0.747 84.8 57.7 ± 3.0 87.4 ± 4.6 92.0 ± 0.8 93.8 ± 0.4 78.2 ± 0.1 99.9 ± 0.0
Anime Face Dataset[55] 0.750 90.6 78.7 ± 2.6 89.7 ± 6.9 98.1 ± 0.2 98.9 ± 0.1 78.2 ± 0.1 100.0 ± 0.0

8.2 Dataset Collection and Preparation

The datasets (see Table 2) used in this study are primarily obtained from Torchvision Datasets [47]
and the MedMNIST+ collections [43, 44]. Table 2 summarizes all datasets, including the number of
training, validation, and test samples, as well as total sizes.

To mitigate the limited number of samples in some datasets, data augmentation is applied. Augmented
datasets are indicated by the suffix AUG. EuroSAT and FER-2013 are augmented via horizontal flips.
BloodMNIST and DermaMNIST are augmented using horizontal flips, vertical flips, and combined
horizontal and vertical flips.

To ensure consistent image dimensions, MNIST, EMNIST, KMNIST, and FashionMNIST (28× 28)
are padded with black pixels to reach 32 × 32. All other datasets are either already at the target
resolution or resized directly to 32× 32.

To study the effect of input dimensionality, we select OrganAMNIST because it is available at a high
resolution of 128× 128, which can be downscaled to 64× 64 and 32× 32 as needed.

8.2.1 Dataset Complexity

To quantify the intrinsic complexity of the datasets, we approximate Kolmogorov complexity using
compression-based measures. Each dataset is concatenated into a single PNG file, and the resulting
compression ratio serves as a practical proxy for complexity. Datasets that compress efficiently
exhibit more regularity and lower complexity, whereas datasets that compress poorly contain higher
variability and are considered more complex.

Table 3 reports the complexity values for all datasets, obtained both from PNG concatenation and
alternative compression methods (Zip, bzip2, Zstd, NumPy NPZ). Lower values correspond to
simpler datasets such as MNIST, while higher values correspond to more complex datasets such as
Food-101 and Anime.
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Table 2: Summary of datasets used in our study. Train, validation and test split are listed. Overview
on the augmentation of smaller datasets is also provided.

Dataset Train Val Test Total
MNIST[45] 50,000 10,000 10,000 70,000
EMNIST[46] 102,800 10,000 10,000 122,800
KMNIST[47] 50,000 10,000 10,000 70,000
FashionMNIST[48] 50,000 10,000 10,000 70,000
OCTMNIST[43, 44] 89,309 10,000 10,000 109,309
SVHN[49] 79,289 10,000 10,000 99,289
EuroSAT[50] 20,250 3,375 3,375 27,000
EuroSAT-AUG 40,500 6,750 6,750 54,000
DermaMNIST[43, 44] 7,513 1,251 1,251 10,015
DermaMNIST-AUG 30,052 5,004 5,004 40,060
BloodMNIST[43, 44] 12,820 2,136 2,136 17,092
BloodMNIST-AUG 51,280 8,544 8,544 68,368
GTSRB[51] 38,881 6,479 6,479 51,839
ChestMNIST[43, 44] 92,120 10,000 10,000 112,120
Country211[47] 47,476 7,912 7,912 63,300
CIFAR-100[52] 40,000 10,000 10,000 60,000
FER-2013[53] 25,887 5,000 5,000 35,887
FER-2013-AUG 51,774 10,000 10,000 71,774
CIFAR-10[52] 40,000 10,000 10,000 60,000
PathMNIST[43, 44] 87,180 10,000 10,000 107,180
OrganAMNIST[43, 44] 44,124 7,353 7,353 58,830
Food-101[54] 81,000 10,000 10,000 101,000
Anime Face Dataset[55] 47,675 7,945 7,945 63,565

Random removal of samples from a dataset changes its size and compressed size but does not
affect the underlying data distribution and maintains the same Compression Ratio. Formally, if
D = {x1, . . . , xN} and D′ ⊂ D is obtained by removing k samples, the expected empirical
distribution of D′ satisfies

E[p̂D′(x)] = p̂D(x),

demonstrating that the underlying distribution remains preserved. For example, removing 10,000
samples from MNIST (N = 50,000) reduces the compressed size by 1/5, while the data distribution
remains approximately the same.

8.3 Diffusion Model Training Procedure

The training of our diffusion model follows the framework described in the theoretical background
and incorporates several practical considerations to ensure consistency across experiments.

Controlling Experimental Variables: To isolate the effect of dataset complexity and image resolu-
tion, we control all other training variables to prevent confounding factors.

Number of Iterations: All models are trained for a fixed total of 5 million iterations. This number
was chosen empirically to ensure smooth convergence across all datasets.

Architecture: We use a conditional U-Net with three levels of encoder–decoder blocks, symmetric
skip connections, and self-attention layers at multiple resolutions to capture both local and global
dependencies. The base channel width is 64, doubling at each successive level. Architecture depth
and channel width are held constant across experiments to isolate dataset and resolution effects.

Optimization Strategy: Training uses the AdamW optimizer with a one-cycle learning rate scheduler
and weight decay to facilitate stable convergence. A linear noise schedule is applied, and an
exponential moving average (EMA) of the model weights is maintained, as EMA weights generally
yield higher sample quality at inference.
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Table 3: Complexity values of datasets obtained using PNG concatenation as well as alternative
compression methods (PNG folder compression, Zip, bzip2, Zstd, and NumPy NPZ). The values
serve as proxies for the intrinsic complexity of each dataset, with lower values indicating simpler,
more regular datasets and higher values indicating more complex, diverse datasets.

Dataset PNG concat. PNG Folder Zip of PNG bzip2 Zstd NPZ
MNIST[45] 0.16 0.27 0.37 0.13 0.16 0.16
EMNIST[46] 0.28 0.41 0.50 0.18 0.24 0.25
KMNIST[47] 0.30 0.43 0.53 0.27 0.31 0.31
FashionMNIST[48] 0.40 0.51 0.61 0.39 0.43 0.44
OCTMNIST[43, 44] 0.50 0.62 0.72 0.50 0.68 0.66
SVHN[49] 0.53 0.56 0.59 0.79 0.95 0.88
EuroSAT[50] 0.54 0.56 0.60 0.59 0.76 0.73
DermaMNIST[43, 44] 0.54 0.57 0.60 0.77 0.94 0.87
BloodMNIST[43, 44] 0.62 0.66 0.70 0.58 0.80 0.79
GTSRB[51] 0.62 0.65 0.68 0.71 0.86 0.83
ChestMNIST[43, 44] 0.63 0.74 0.84 0.75 0.98 0.94
Country211[47] 0.68 0.71 0.74 0.85 0.97 0.90
CIFAR-100[52] 0.70 0.73 0.76 0.86 0.96 0.91
FER-2013[53] 0.70 0.82 0.92 0.81 0.97 0.97
CIFAR-10[52] 0.70 0.74 0.77 0.86 0.97 0.92
PathMNIST[43, 44] 0.70 0.73 0.76 0.63 0.84 0.81
OrganAMNIST[43, 44] 0.72 0.84 0.94 0.76 0.88 0.89
Food-101[54] 0.75 0.78 0.82 0.91 1.00 0.97
Anime Face Dataset[55] 0.75 0.82 0.85 0.89 0.97 0.95

Model Selection: After each epoch, the model is validated on Dreal
val using the same MSE objective

employed during training. This validation allows for consistent monitoring of convergence and
ensures comparability across runs.

By carefully controlling these factors, any observed differences in generative performance can be con-
fidently attributed to variations in dataset complexity or image resolution, rather than inconsistencies
in architecture, optimization, or training procedure.

8.4 AI Image Generation

During image generation, noise is iteratively transformed according to a conditional label. Generated
datasets are sampled to match the size of the corresponding real subsets:

|Dreal
train| = |Dgen

train|, |Dreal
val | = |Dgen

val |, |Dreal
test | = |Dgen

test |.

Figures 5 and 6 illustrate the effect of varying the classifier-free guidance (CFG) parameter on image
saturation for FashionMNIST and CIFAR-10. Increasing CFG values (0, 2, 10) produces visibly more
saturated images, demonstrating how generation parameters can influence dataset characteristics.

Figure 5: FashionMNIST images with increasing CFG values (0, 2, 10). Saturation increases with
higher CFG.

We do not apply techniques such as Classifier-Free Guidance (CFG) to improve sample quality. CFG
introduces a weight parameter w that requires careful tuning, which varies across datasets. Opti-
mizing w would introduce an uncontrolled variable that could influence discriminator performance.
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Figure 6: CIFAR-10 images with increasing CFG values (0, 2, 10). Saturation increases with higher
CFG.

Prior work shows that CFG affects image saturation [56], potentially providing a trivial signal for
discriminators.

Other methods, such as Autoguidance [57] or APG [56], mitigate this issue or improve FID. However,
these methods also require dataset-specific optimization, which would similarly introduce non-
controlled variables. By avoiding these techniques, we ensure that discriminator evaluation reflects
intrinsic dataset and model characteristics rather than artifacts of sampling parameter tuning.

Table 4 reports the Fréchet Inception Distance (FID) between real and generated datasets, alongside
the FID between training and validation subsets of the real data. The Real-AI FID provides a
quantitative measure of how closely the diffusion model replicates the distribution of real images,
with lower values indicating higher fidelity. The Train-Val FID serves as a baseline and a lower bound
on achievable FID, capturing the natural variability within the real dataset itself. Across datasets, FID
values vary significantly, reflecting differences in dataset complexity, image diversity, and the inherent
difficulty of generation. For simpler datasets like FashionMNIST or KMNIST, Real-AI FID is low
and close to the Train-Val baseline, while complex datasets such as ChestMNIST or PathMNIST show
substantially higher FID, indicating that the model struggles more to capture intricate visual patterns.
Interestingly, datasets with intermediate complexity such as SVHN and EuroSAT are the ones with
highest FID scores. These results highlight both the strengths and limitations of the diffusion model
in reproducing diverse datasets and provide context for subsequent discriminator evaluations.

Table 4: Fréchet Inception Distance (FID) comparisons for real versus generated datasets (Real-AI
FID) and between training and validation splits of real data (Train-Val FID) across multiple datasets.
Lower FID indicates higher fidelity to the real distribution.

Dataset Real-AI FID Train-Val FID
MNIST[45] 14.97 0.74
KMNIST[47] 8.19 0.95
FashionMNIST[48] 6.27 1.47
EMNIST[46] 11.01 0.69
SVHN[49] 68.71 1.90
EuroSAT[50] 44.20 5.23
BloodMNIST[43, 44] 9.35 1.99
GTSRB[51] 15.64 3.04
Country211[47] 23.27 4.39
CIFAR-100[52] 21.91 3.69
CIFAR-10[52] 17.45 3.23
FER-2013[53] 15.30 3.32
OrganAMNIST[43, 44] 14.11 2.82
Food101[54] 19.41 2.82
DermaMNIST[43, 44] 19.99 6.22
OCTMNIST[43, 44] 10.26 1.04
ChestMNIST[43, 44] 15.45 1.16
PathMNIST[43, 44] 14.77 1.51
Anime Face Dataset [55] 13.64 2.36
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Table 5: Overview of discriminator variants, including input modality and the number of tunable
parameters.

Model Input Modality # Tunable Parameters
Base Normalized ≈ 40,000
Base Fourier ≈ 40,000
Big Normalized ≈ 520,000
Big Fourier ≈ 520,000

ResNet (Frozen) Normalized ≈ 500
ResNet (Fine-tuned) Normalized ≈ 11,000,000

8.5 Discriminator Model Training

This section describes the training procedure for discriminators tasked with distinguishing real images
from AI-generated ones. Table 5 gives an overview of the models used.

The input data consists of two sources: real images and generated images. To ensure a balanced
dataset, the number of real samples is matched to the number of AI-generated samples.

The split of Dreal corresponds to that used during diffusion model training, which only used Dreal
train

and Dreal
val .

For discriminator training, the number of AI-generated images in Dgen
train is capped at 50,000, yielding

a maximum total of 100,000 images. The training, validation, and test sets for the discriminator
contain real and generated images in equal proportion, forming Ddiscr = Dreal ∪Dgen.

Each image is assigned a binary label:

y =

{
1 if the image is real,
0 if the image is AI-generated.

We evaluate six discriminator variants, differing in architecture and input representation, while
keeping hyperparameters consistent.

All models are trained using the AdamW optimizer with

α = 2× 10−4, β1 = 0.5, β2 = 0.999.

The loss function is Binary Cross-Entropy with logits. Training is performed for 1 million iterations.

After each epoch, the discriminator is evaluated on the validation set Ddiscr
val . The model achieving the

lowest validation loss is selected for final evaluation.

9 Computational Resources

All experiments were conducted on an internal compute cluster equipped with RTX 3090 GPUs. In
total, we logged 2,261 GPU-hours for both exploratory experiments and the reported results.
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• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach is only
tested on a few datasets or with a few runs. In general, empirical results often depend
on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification:
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: See for instance Section 8.5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: The code is provided in a zip file
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they are chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: See Table 1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they are calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See overall numbers in Section 9.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There are no direct impacts from this work. The model sizes are too small for
general usage of deep fakes.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent is obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks are disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) are obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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